\

High Performance Natural
Language Processing

EMNLP 2020

W

Google Research UNIVERSITY of
WASHINGTON

UWNLP

Presenters

Gabiriel llharco Cesar llharco lulia Turc
University of Washington Google Google

Tim Dettmers Felipe Ferreira Kenton Lee
University of Washington Google Google

\.

High Performance NLP

bit.ly/2SmMhKY7

Google Research UNIVERSITY of

WASHINGTON ~ UWNLP

https://bit.ly/2SmhKY7

Agenda

01

02

03

(oF:}

05

06

07

Introduction
Fundamentals
Core Techniques
Efficient Attention

Case Studies
Scaling in Practice

Closing Notes

(0) |
Introduction \

Motivation & Applications

~—— Data
---- Log—normal fit: p=5.63, o= 0.8

Why do we need it ?

SCALE

T T 1
6 12 18 4

[] N EWS Time since article publication(hours)

o Realtime: Majority of content is consumed within a few hours after /

publication 1]
o Thousands of news articles per second
o 40-80 sentences per article
® SOCIAL NETWORKS: ~6 Thousand tweets per second [2]

e THE WEB: Orders of magnitude bigger

\/\/ h at CO U | d We d O' if We h a d It ? [1] Tatar, A, Antoniadis, P, Amorim, M.D.d. et al. From popularity prediction to ranking online news.

Soc. Netw. Anal. Min. 4, 174 (2014). https://doi.org/10.1007/s13278-014-0174-8

[2] https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

https://doi.org/10.1007/s13278-014-0174-8

2 PEOPLE.com
Eddie Van Halen's Son Wolf Posts Adorable Childhood

S u m m a ri Zat i o n Photo with‘Da(‘! Days After His Death

3 ed on Tuesday after battling cancer for years
2 days ago

A sillboard

518 © 9 O A - P4U51% Van Halen's Songs Were Streamed More Than 30 Million
Times After Eddie Van Halen's Death

é c<: E Following the t idie V alen on Oct. 6, his namesake band's
catalog of songs were streamed over 31 million times in the U.S.,
2 days ago
IE Full Coverage
. .
Eddie Van Halen has died = weeon

Van Halen streams increase by over 1,300% following
Eddie Van Halen's death

Van Halen's US music streams have increased by over 1300% since the
f t dd n, figures have revealed

Top coverage

23 hours ago

W ™z
Eddie Van Halen Dead at 65 from Cancer

5 days ago

Yahoo Entertainment

Eddie Van Halen Dies at 65

Eddie Van Halen, whose innovative and explosive guitar playing kept the
hard rock band that bore his family name cemented to the top of the .

5 days ago

Ehe New ork Times

Eddie Van Halen, Virtuoso of the
Rock Guitar, Dies at 65

& The New York Times

Eddie Van Halen, Virtuoso of the Rock Guitar, Dies at 65
Eddie Van Halen, whose razzle-dazzle guitar-playing — combining complex
harmonics, innovative fingerings and ingenious devices he

4 days ago

11 minutes ago

™z
Eddie Van Halen Dead at 65
from Cancer

!

M Fox News

o R R § S O S T o Ot U (g

Summarization

518 © 9 08 - P4051%

< <
IE Full Coverage

Eddie Van Halen has died

Top coverage

Associated Press

Ehe New ork Times
Eddie Van Halen, Virtuoso of the
Rock Guitar, Dies at 65

11 minutes ago

™z
Eddie Van Halen Dead at 65
from Cancer

Eddie Van Halen <

Musician

Available on

B YouTube

© Spotify
Apple Music

v~ More music services

Edward Lodewijk "Eddie" Van Halen was an American musician,
songwriter, producer, and inventor. He was the main songwriter and
lead guitarist of the American rock band Van Halen, which he co-
founded in 1972 with his brother, drummer Alex Van Halen, bassist
Mark Stone, and singer David Lee Roth. Wikipedia

Died: October 6, 2020, Santa Monica, CA Trending

Born: January 26, 1955, Amsterdam, Netherlands

Spouse: Janie Liszewski (m. 2009-2020), Valerie Bertinelli (m.
1981-2007)

Children: Wolfgang Van Halen

Facts Extraction

)

P :
i ~ [&] Moreimages

yahoo/sports - Nei /| g g

Quinton Byfield becomes e

highest-ever drafted QUInton Byﬁeld <
Black player in history Ice hockey centre

after Kings take him No...

15hours'ago Quinton Byfield is a Canadian junior ice hockey centre. He is

currently playing for the Sudbury Wolves of the Ontario Hockey
League. Byfield was selected second overall by the Los Angeles
Kings in the 2020 NHL Entry Draft, becoming the highest drafted
black player in NHL history. Wikipedia

Born: August 19, 2002 (age 18 years), Newmarket, Canada
Height: 6' 4"

Nationality: Canadian

Playing career: TBD-present

Current team: Sudbury Wolves (Centerman)

NHL Draft: Eligible 2020

Highest-ever drafted Black player in history.

Facts Extraction

e Noteworthy Facts

® Trendiness

yahoo/sports

Quinton Byfield becomes
highest-ever drafted
Black player in history
after Kings take him No...

15 hours ago

& Rink Royalty
LA Kings: Scout believes Quinton Byfield doesn't need
extra time

Winners in the lottery and coming away with the second overall pick, the
pick is likely going to be either Quinton Byfield or Tim Stitzle. The debate ...
1 week ago

E dobberprospects.com

How Quinton Byfield Stacks Up to Previous Second Overall

@Hockey_Robinson explains why he stuck to his guns and ranked Quinton
Byfield ahead of Alexis Lafreniere in his latest draft rankings.
2 weeks ago

& Sportsnet.ca

Quinton Byfield selected second overall by Kings in 2020
NHL ...

The Los Angeles Kings selected Quinton Byfield of the Sudbury Wolves with
the second-overall pic in the 2020 NHL Draft. Top Videos ...
6 days ago

& Detroit Jock City

Red Wings: Quinton Byfield or Tim Stiitzle falling to four is
dream come true

The Detroit Red Wings have the fourth overall pick, and it could be a dream
come true if Quinton Byfield or Tim Stiitzle falls into Steve ...
4 weeks ago

g@Reliance

10

Sentence Entailment

Shopes

Submita Topic | Shop Snopes What'sNew Hot50 Fact Checks

7:58 7

< Search

In September 2020, a|false rumor saying that Netflix CEO Reed Hastings hadl

been arrested on child pornography charges was widely circulated on social |

media. While that rumor was entirely made up out of whole cloth, the pushers of
that misinformation at least correctly identified the CEO of the streaming giant.

A few days after that rumor went viral, an even more incorrect version started to
make its way around the internet. This time, social media users claimed that it
was actually Netflix CEO “Kim Martin Morrow” — who is nonexistent — had been
arrested for child pornography charges:

www.wbtw.com > news » national » sen-cruz-calls-for-criminal-invest... ¥

Correct Attribution

Sen. Cruz calls for criminal investigation into Netflix's } SAHRIAL

Sep 12, 2020 — Unedited press release from the press office of Sen. Ted Cruz (R-Texas) sent a
letter calling on the Department of Justice to investigate whether Netflix, its executives or the
makers of the film violated any federal laws against the production and distribution of child
pornography.

Kira-Martin-Merrew|the CEO of Netflix has just been charged
with 15 charges for child pornography and 31,000 files have
been found on his personal computers for child porn from
ages 8 and as young as toddlers. So, | think the
investigation was needed. #SaveOurChildren

WBTW.COM

Sen. Cruz calls for criminal investigation into Netflix's
‘Cuties’

ﬁ) Share
¥ 10

11,937 Shares

"

Recent years in Natural
Language Processing

12

Benchmarks through the years - SQuAD 1.1

SQuAD1.1 F1 score vs. date

F1 score

100
® Le°® o ° d

Human Performance ° e o o8

_____________________ o B0 e e oo
9 912 e, 80 ¢ T

: L S - ® °
‘..o "og o ° »
. Ve v ¢
e ¢ o® f. 8 ° e ®
P C3 oo °® :.p *
° o ° [] .. °
80 ° Lar it ‘ gk
e ®e o] °* e *, o*
[] []
S (] :

00 ° ‘

(]

[]
[]
60
50
N N N N N N N N N N N N N N N N N

\0,0 Q\D o 6\,0 \QD 0"9 QNQ 6\9 \Q,Q O & 6\9 O & QD‘D Q,\,Q \QD
0"6 6(\' 0’4\' Q« Q(\, & Q\, g’\‘b' & S 0'9' Q@, &Q, g“/Q' &Q, &Q,
U S S . S S A A .

The Stanford Question Answering Dataset, https://rajpurkar.github.io/SQUAD-explorer/

13

https://rajpurkar.github.io/SQuAD-explorer/

Benchmarks through the years - SQuAD 2.0

SQuAD2.0 F1 score vs. date

100
o0 0 e o
Human Performance = IR :.". o Tel™
B T it el I e e e e To"o_.'bTO""'__"—"—-T
89.5 ¥ e e ¢ .
° .'O 3.‘ 8 o $ o
[]
'E) '.qg ® o o o)
° ® ° °
80 « s
o o °
° ° S
[° [JON) ¢ e a [] s
— (1] [] @
o .-
Q HE .
L o .
L]
L []
Y []
[] []
60
50
N N N N N N N N N N N N N N N N N
S &S S ST TS ST S SS
N Q N N N N N N N Q N N N Q N N N
< AW A7 A & & & & o o o o 1 4 o o
S S S S S S S S S S S
Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv Vv

The Stanford Question Answering Dataset, https://rajpurkar.github.io/SQUAD-explorer/ 14

https://rajpurkar.github.io/SQuAD-explorer/

Benchmarks through the years - GLUE

GLUE aggregated score vs. Date

Score

95

90

85

80

75

70

Human Performance

4/1/2019

7/1/2019

10/1/2019

1/1/2020 4/1/2020 7/1/2020

Date

The GLUE Benchmark (Wang et al., 2018)

15

https://arxiv.org/abs/1804.07461

A brief recent history of scale in NLP

NLP models through time (circa Nov 2018)

400

B BERT .
2 (340M)
g 300
=
®
Q
© 200
&
P GPT
o
5 00 ® (110M)
)
0
=
=

0

06/2018 07/2018 08/2018 09/2018 10/2018

Release date

: “[...] scaling to extreme i

model sizes also leads to
Iarge improvements [...]”

(Devlln et al., 2018)

16

https://arxiv.org/pdf/1810.04805.pdf

A brief recent history of scale in NLP

Number of parameters (in millions)

NLP models through time (circa Nov 2019)

12500
TS e
10000 (11B)
MegatronLM e
7500 (838)
5000
Transformer GPT-2 Grover
2500 =T BERT ELMo (1.5B) (1.5B)
(110M) (340M) (465M) ”
0. L .
07/2018 10/2018 01/2019 04/2019 07/2019 10/2019

Release date

_ ' “[...] scaling the model
' size to 11 billion |
' parameters was the most !
' important ingredient for
achieving our best
: performance.” |
' (Raffel et al, 2019)

17

https://arxiv.org/pdf/1910.10683.pdf

A brief recent history of scale in NLP

Number of parameters (in millions)

NLP models through time (circa Nov 2020)

DeepSpeed

1000000 =
o GShard
(6008)
500000
GPT-3
250000 (175B)
GPT BERT GPT-2 T5 Turing-NLG e
(11om) (340m) | (1:98) (11B) (17B)
0= - a_a = P P
07/2018 01/2019 07/2019 01/2020 07/2020

Release date

18

Scaling Laws

Reducible Loss

Images 8x8, loss per image

ST

Compute (PF-days)

10*

107

10°

10°

10°

107

10°

10°

Text—Image

1.5

10

1.50
1.25
10

Image— Text

10®

107

10°

10°

108

107

10°

10°

e (sl) M
=10 ~

10°F 107 10

Language

........ L=2.57- C—0.048 100

10°° 1074 10 10 10

Line color denotes model size

Henighan et al., 2020

19

https://arxiv.org/pdf/2010.14701.pdf

The drawbacks of naive scaling

1) Disconnect with production systems

- Latency
- Hardware constraints
- Energy costs

Memory CPU/GPU/TPU

=

Storage

Battery

20

The drawbacks of naive scaling

1) Disconnect with production systems

2) Costs
- Hardware
- 2048 TPU v3 accelerators (GShard, Lepikhin et al., 2020)
- 285,000 CPU cores, 10,000 GPUs (GPT-3, Brown et al., 2020)
- Financial

- GPT-3 training cost is estimated at 4.6 million dollars.

21

https://arxiv.org/pdf/2006.16668.pdf
https://blogs.microsoft.com/ai/openai-azure-supercomputer/
https://lambdalabs.com/blog/demystifying-gpt-3/

The drawbacks of naive scaling

1) Disconnect with production systems
2) Costs
3) Accessibility

- Ever-larger hardware and financial requirements impose great barriers to many
researchers and institutions

- This can have a serious impact in our research community

- For instance, 62% of PhD students have access to 4 or less GPUs, according to a
recent poll.

22

https://twitter.com/Tim_Dettmers/status/1282708522552057856

The drawbacks of naive scaling

1) Disconnect with production systems
2) Costs
3) Accessibility

Altogether, this is especially relevant to a field that scaled by
3 orders of magnitude in 2 years.

23

We should strive for
efficiency

Towards more efficient NLP

1) Core techniques

- Knowledge Distillation

Source: unsplash.com

25

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques

- Knowledge Distillation

- Quantization

Source: unsplash.com

26

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
- Knowledge Distillation

- Quantization

- Pruning

Source: unsplash.com

27

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques

2) Efficient attention

- Data-Independent Patterns

28

Towards more efficient NLP

1) Core techniques
2) Efficient attention
- Data-Independent Patterns

- Data-Dependent Patterns

29

Towards more efficient NLP

1) Core techniques

2) Efficient attention
- Data-Independent Patterns
- Data-Dependent Patterns

- Kernels and Alternative Attention Mechanisms

30

Towards more efficient NLP

Le—————

Le—————

w0
&
R
[
% e
O
P
5 g8 2
A T <
©
e
s 5 = E
o 5 T g L
c +
5 € o I
2 @ 9 ¢ <
O = O v
nteeeC
had%.wﬂ
- +—
s E £ 2 & £
M.wmq_aru
> 238 258
N <
CE____
—~
— &N

31

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies

- Efficient Language Models

Source: unsplash.com
32

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
- Efficient Language Models

- Retrieval

F“fﬂﬂw By
Ll

Source: unsplash.com

33

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies

4) Scaling in Practice

- Scaling Laws of Neural Language Models

Maximum Model Size by Date
== Parameters (bn) Trendline for Parameters (bn)

100000

10000

1000

07/01/2018 01/01/2019 07/01/2019 01/01/2020 07/01/2020 01/01/2021

07/01/2021

34

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies

4) Scaling in Practice

- Scaling Laws of Neural Language Models
- Parallelism Technigues

Pipeline Stage 0

Network Layers 0-7

Data Parallel Rank O
Pipeline Stage 1 Pipeline Stage 2

Network Layers 8-15 Network Layers 16-23

Pipeline Stage 3

Network Layers 24-31

JEEY TUEY §REY §iEN

Pipeline Stage O

Network Layers 0-7

Data Parallel Rank 1
Pipeline Stage 1 Pipeline Stage 2

Network Layers 8-15 Network Layers 16-23

Pipeline Stage 3

'/
Network Layers 24-31

Source: Microsoft Blog Post

35

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/#toc-heading-0

Towards more efficient NLP

1) Core techniques

B CPU = GPU
2) Efficient attention

3) Case studies

4) Scaling in Practice Q Q Q Q Q Q ‘ ’

- Scaling Laws of Neural Language Models
- Parallelism Techniques
- Methods to Reduce Memory Footprint

Active

Swap in to Layer

GPU

36

Towards more efficient NLP

1) Core technigues
2) Efficient attention
3) Case studies

4) Scaling in Practice

- Scaling Laws of Neural Language Models
- Parallelism Techniques

- Methods to Reduce Memory Footprint

- Mixture of Experts

N

MoE layer
G(X),[|G(X)yq
Expert 1

Expert n

37

02

Fundamentals

\

38

Sequence-to-sequence models

THIS 15 YOUR MACHINE LEARNING SYSTEM?

outputs
YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.
WHAT IF THE ANSLERS ARE LRONG?)
JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT- piles of sequential,
/ differentiable tensor
operations

5 inputs

https://xkcd.com/1838/

https://xkcd.com/1838/

Sequence-to-sequence models

outputs

|

piles of sequential,
differentiable tensor

operations

inputs

Machine Translation

Sentiment Analysis

Language modeling

Speech recognition

inputs

Hello, world

Amazing movie, 10/10!

outputs

Ola, mundo

1.2.0.0.9.¢

The quick brown fox...

Hello, world

RNNs

RNNSs allow computations
over sequences of arbitrary

length

outputs

|

piles of sequential,
differentiable tensor

operations

inputs

RNN cell

RNN cell

RNN cell

41

Encoders and
Decoders

RNNSs allow computations
over sequences of arbitrary

length

outputs

|

piles of sequential,
differentiable tensor

operations

|

inputs

Encoder

aniasins

Decoder

42

The encoder-decoder bottleneck

The agreement on the European Economic Area was signed in August 1992 . <EOS>

K
'mformation pottienec

accord sur la zone économigue européenne signé aolt 1992 <EOS>

A g

Example derived from Bahdanau, et al. 2014 (https://arxiv.org/pdf/1409.0473.pdf)
43

https://arxiv.org/pdf/1409.0473.pdf

Attention

accord sur la zone économique européenne a été signé en aolt 1992 . <EOS>

French

Attention head

English

The agreement on the European Economic Area was signed in August 1992 . <EOS>

Example derived from Bahdanau, et al. 2014 (https://arxiv.org/pdf/1409.0473.pdf)
44

https://arxiv.org/pdf/1409.0473.pdf

Attention

A summary of |,
based on how similar their
are with the guery

Bahdanau et al.

Neural machine translation by
jointly learning to align and
translate. 2014

Attention head
Thang Luong et al.

Effective approaches to
attention-based neural machine
translation. 2015

10 11 19 B

45

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf

Dot product
attention .
Z Arlk

&(q, i) = exp(q ' ir)

Z?:O ¢(q7 ZJ)

Thang Luong et al.

Effective approaches to

attention-based neural machine

ap —

translation. 2015

1] |

10 11 19 o

Attention head

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025

Attention

mechanisms

The attention matrix

Are

you

going
to

the

hotel

47

Transformers

Motivation

accord sur la zone économique européenne a été signé en aolt 1992 . <EOS>

French

Attention head

English

The agreement on the European Economic Area was signed in August 1992 . <EOS>

Example derived from Bahdanau, et al. 2014 (https://arxiv.org/pdf/1409.0473.pdf)
49

https://arxiv.org/pdf/1409.0473.pdf

Motivation

sequential

parallel

50

Scaled
Dot-Product

Attention

Queries, keys and values

A summary of values,
based on how similar their

corresponding keys are

with the guery

!
K VvV Q

51

Scaled
Dot-Product

Attention

Queries, keys and values

For some similarity

function ¢

Oi = Z aij‘/}

=0

!
K VvV Q

ij

¢(Q'L7 KJ)

Z;:O ¢(Qu KP)

52

Scaled
Dot-Product
Attention softmax (QKT> Vv

Vd

Using dot-product similarity,

we can vectorize nicely

K]
6(01, K;) = exp (Q j)

Vi~

N

.~ K V
W Normalization factor for

O

d = feature dim numerical stability

exXp x;

SOftmaX(ZC)i = W
J J

53

Scaled
Dot-Product

Attention

Let's dive into the dimensions

(batch omitted for simplicity)

£ = sequence length

d = feature dim

softmax (

O

S

«-- =

A
X

l
i

«--9

54

Scaled
Dot-Product

Attention

Let's dive into the dimensions

(batch omitted for simplicity)

£ = sequence length

d = feature dim

REXE
A

—
-
softmax (Qj%) Vv

l
i

«--x
«--9

55

Scaled
Dot-Product

Attention

Let's dive into the dimensions

(batch omitted for simplicity)

£ = sequence length

d = feature dim

«-- =

A
X

l
i

«--9

56

Scaled
Dot-Product

Attention

Let's dive into the dimensions

(batch omitted for simplicity)

£ = sequence length

d = feature dim

foe
A

|
A
4 N\

softmax (%f;) V } - > REXd

l
i

«--x
«--9

57

Scaled
Dot-Product

Attention

Let's dive into the dimensions

(batch omitted for simplicity)

£ = sequence length

d = feature dim

quadratic in
R ===
\N sequence length!

*
I
-
softmax (Q
Vd

i >v}__>R€><d

58

Multi-head

attention

£ = sequence length

d = feature dim
h = # of attention heads | T T . T

Multi-head

attention

£ = sequence length
d = feature dim
h = # of attention heads

T

linear

/

i

linear

d
_ - each head: R %

- WE WY W e REXE

60

Multi-head

attention

£ = sequence length
d = feature dim
h = # of attention heads

T

d
_ o €achhead: R %

L

|ineVar |inT7 T/ar e W’iK7 WiV7 W’LQ -~ R% X %
\K Vv Q)

i

v

/2

61

Multi-head

attention

£ = sequence length
d = feature dim
h = # of attention heads

T

d
_ o €achhead: R %

L

|ineVar |inT7 T/ar e W’iK7 WiV7 W’LQ -~ R% X %
\K Vv Q)

i

v

/2

62

Multi-head

attention

£ = sequence length
d = feature dim
h = # of attention heads

linear

d
--------- - cach head: Rex h

bottleneck is quadratic in
e ——
B sequence length due to QK!

d
_ o €achhead: REX h

LI —

|ineVar |inT7 T/ar e W’iK7 WiV7 W’LQ -~ R% X %
\K Vv Q)

i

v

/2

Positional

encodings

So far, attention has been a

set operation.

Let's add positional

information!

positional

encodings

®_.

+ —>

64

Positional

encodings

So far, attention has been a

set operation.

Let's add positional

information!

These can be either learned

or fixed.

Eyi =

positional 6) .
encodings

'
Fixed: | \i\H
N | ‘\
\'U | \\‘

for a position k in the sequence

and 1 in the feature space

position k

sin (k;/loooo%) if 7 is even
cos (k/mooo%) if 7 is odd

65

The transformer encoder

multi-head
attention

positional
encoding

input
embedding

Vaswani et al., 2017

x N

-M

66

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/abs/1706.03762

The transformer decoder

Vaswani et al., 2017

KandV
from encoder

add & norm

add & norm

multi-head
attention

positional
encoding

add & norm

masked
multi-head
attention

input
embedding

x N

prevent model from
peeking at the
future by masking
attention weights

-MM

67

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/abs/1706.03762

Putting it all together

Vaswani et al, 2017

add & norm

add & norm

multi-head

attention

add & norm

add & norm

multi-head
attention

x N

add & norm

masked
multi-head
attention

x N

68

https://arxiv.org/abs/1706.03762

Transformers in recent literature

Transformers have become successful in a wide range of domains and applications, including:

- Mathematics and theorem proving (e.g. Lample et al., 2019, Clark et al., 2020)

EQUATION SOLUTION

16x3 - 42x2 + 2x
e y = sin~! (4x% - 14x3 + x2?)
(-16x® + 12x7 - 2045 + 28x5 - x4 + 1)V/2 ;

3xy cos(x) - V9x?sin(x)? + 1y'+ 3ysin(x) =0 y = cexp (sinh-1(3xsin(x)))

c1+ 3x + 3log(x)
4xtyy" - Bxty'? - 8x3yy'~ 3.x3},"- Bx2y? - 6.r2}/' - 3x2}/" -9xy'-3y =0 D ———————
x(c, + 4x)

https://ai.facebook.com/blog/using-neural-networks-to-solve-advanced-mathematics-equations/

69

https://ai.facebook.com/blog/using-neural-networks-to-solve-advanced-mathematics-equations/
https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2002.05867.pdf

Transformers in recent literature

Transformers have become successful in a wide range of domains and applications, including:

- Mathematics and theorem proving (e.g. Lample et al., 2019, Clark et al., 2020)

- Music generation (e.g. Anna Huang et al., 2019)

https://magenta.tensorflow.org/music-transformer

70

https://magenta.tensorflow.org/music-transformer
https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2002.05867.pdf
https://arxiv.org/pdf/1809.04281.pdf

Transformers in recent literature

Transformers have become successful in a wide range of domains and applications, including:

- Mathematics and theorem proving (e.g. Lample et al., 2019, Clark et al., 2020)

- Music generation (e.g. Anna Huang et al., 2019)

- Biology (e.g. Rives et al., 2019, Madani et al., 2020)

71

https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2002.05867.pdf
https://arxiv.org/pdf/1809.04281.pdf
https://www.biorxiv.org/content/10.1101/622803v1.full.pdf
https://arxiv.org/pdf/2004.03497.pdf

Transformers in recent literature

Transformers have become successful in a wide range of domains and applications, including:

Mathematics and theorem proving (e.g. Lample et al., 2019, Clark et al., 2020)

Music generation (e.g. Anna Huang et al., 2019)

Biology (e.g. Rives et al., 2019, Madani et al., 2020

)

Vision and Language (e.g. Tan et al., 2019, Lu et al, 2019, Chen et al., 2020)

What color are her eyes?
What is the mustache made of?

How many slices of pizza are there?
Is this a vegetarian pizza?

Visual Question Answering
(Agrawal et al., 2015)

72

https://arxiv.org/pdf/1505.00468.pdf
https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2002.05867.pdf
https://arxiv.org/pdf/1809.04281.pdf
https://www.biorxiv.org/content/10.1101/622803v1.full.pdf
https://arxiv.org/pdf/2004.03497.pdf
https://arxiv.org/pdf/1908.07490.pdf
https://arxiv.org/abs/1912.02315
https://arxiv.org/abs/1909.11740

Transformers in recent literature

Transformers have become successful in a wide range of domains and applications, including:

- Mathematics and theorem proving (e.g. Lample et al., 2019, Clark et al., 2020)

- Music generation (e.g. Anna Huang et al., 2019)

- Biology (e.g. Rives et al., 2019, Madani et al., 2020)

- Vision and Language (e.g. Tan et al., 2019, Lu et al., 2019, Chen et al., 2020)

- Computer Vision (e.g. Ramachandran et al., 2019, Dosovitskiy et al., 2020)

L 0]
< -@- CNNs -0 X
> e e i Sl ’
0 - Self-attention P /
© 5
= /, /
3 4 /
O 80 Rod /
< 2 *
— ’ 3
/

Q 751 - w
° ’
= 5
D 704 S’
Z II
[] 2
Rel

@
E .

VTR T B T T L LT A S e\ R e A 2
Q\,\'IQ Q\,\'LQ Q‘\,\'l'Q Q‘\,\'LQ 6\,\10 6\,\10 Q\,\'L“ 0\\10 6\,\'1'0
Release date

https://arxiv.org/pdf/1912.01412.pdf
https://arxiv.org/pdf/2002.05867.pdf
https://arxiv.org/pdf/1809.04281.pdf
https://www.biorxiv.org/content/10.1101/622803v1.full.pdf
https://arxiv.org/pdf/2004.03497.pdf
https://arxiv.org/pdf/1908.07490.pdf
https://arxiv.org/abs/1912.02315
https://arxiv.org/abs/1909.11740
https://arxiv.org/abs/1906.05909
https://arxiv.org/pdf/2010.11929.pdf

Transformers in NLP

Transformers are ubiquitous in NLP.

Large-scale pre-training has been enormously successful (e.g. BERT, ALBERT

Models are typically used in 3 scenarios:

J

15

J

PT-3).

74

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2005.14165

Transformers in NLP

Transformers are ubiquitous in NLP.

Large-scale pre-training has been enormously successful (e.g. BERT, ALBERT

Models are typically used in 3 scenarios:

Pre-training

- Large corpus
(e.g. web crawled data)

- Typically unsupervised
(e.g. masked language
modeling)

- Usually runs in GPUs or
TPUs

J

I5

J

PT-3).

75

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2005.14165

Transformers in NLP

Transformers are ubiquitous in NLP.
Large-scale pre-training has been enormously successful (e.g. BERT, ALBERT, T5, GPT-3).

Models are typically used in 3 scenarios:

Pre-training Fine-tuning

- Large corpus - Smaller corpus
(e.g. web crawled data) - Typically supervised

- Typically unsupervised (e.g. question answering,
(e.g. masked language natural language inference)
modeling) - Usually runs in GPUs or

- Usually runs in GPUs or TPUs
TPUs

76

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2005.14165

Transformers in NLP

Transformers are ubiquitous in NLP.

Large-scale pre-training has been enormously successful (e.g. BERT, ALBERT, T5, GPT-3).

Models are typically used in 3 scenarios:

Pre-training Fine-tuning

- Large corpus - Smaller corpus
(e.g. web crawled data) - Typically supervised

- Typically unsupervised (e.g. question answering,
(e.g. masked language natural language inference)
modeling) - Usually runs in GPUs or

- Usually runs in GPUs or TPUs
TPUs

Production

Inference

Usually runs in CPUSs,
sometimes in mobile
devices

77

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2005.14165

03

Core Techniques

\

78

Knowledge
Distillation

79

https://unsplash.com/photos/FTfjMijq-Ws

Knowledge
Distillation

Hinton et al., 2015

Distilling the Knowledge in a Neural Network

(x, y=0.8)

Teacher

/

B

Data

[
y

Student

Kl

.;f.(x, y=1.0)

80

https://arxiv.org/pdf/1503.02531.pdf

Knowledge
Distillation
for Pre-training

Sanh et al., 2019
DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter

Teacher

how [MASK] you

are
do
well

Data

Student

how [MASK] you

81

https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1910.01108.pdf

Knowledge
Distillation
for Pre-training

Sunetal, 2019
MobileBERT: a Compact Task-Agnostic BERT

for Resource-Limited Devices

Teacher

how [MASK] you

are
do
well

feature map transfer

Data

Student

how [MASK] you

82

https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/2004.02984

Knowledge
Distillation
for Fine-Tuning

Turc et al,, 2019
Well-Read Students Learn Better: On the

Importance of Pre-training Compact Models

1 Regular Pre-training

Student

T how [MASK] you

Data

2 Fine-tuning via distillation

Teacher

-

>/

Data

(x, y=0.8)
- Student

3 (Optional) regular fine-tuning

Student

T (x, y=1.9)

Data

83

https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962

1 Pre-training via distillation a N

Knowledge
[] [] [] T h
Distillation S et
.. ST Student
fOr Pre_tralnlng k / embeddings transfer

how [MASK] you

and Fine-tuning \‘ """"""""
how [MASK] you

Data
Jiaoetal, 2019
TinyBERT: Distilling BERT for Natural / | \ (x, y=0.8)
Language Understanding 2 Fine-training via distillation
Teacher
| _per-layer transfer
D Student
K / embeddings transfer
(XN

84

https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351

Quantization

85

https://unsplash.com/photos/FTfjMijq-Ws

Quantization

Definition

Qz)=q; z<(]

real-valued tensor (activation or weight)

y

quantization operator

quantization precision

86

Quantization

Definition

Qz)=q; z<(]

real-valued tensor (activation or weight) quantization precision

y

quantization operator

Linear Quantization

Z=S(CIJ‘Z)

zero point

scaling factor

87

Quantization

Jacob et al, 2017

Quantization and Training of Neural Networks
for Efficient

Integer-Arithmetic-Only Inference

Quantization-Aware Training

Forward pass on w

w

t

Backward pass onw

*1 = UpdateParameter(w?,

oL

owt’

n°)

88

https://arxiv.org/pdf/1712.05877.pdf
https://arxiv.org/pdf/1712.05877.pdf
https://arxiv.org/pdf/1712.05877.pdf

Quantization

Zafriret al., 2019
Q8BERT: Quantized 8Bit BERT

Shen et al,, 2019

Q-BERT: Hessian Based Ultra Low Precision
Quantization of BERT

i Google Al

Q8BERT: symmetric linear quantization:

Q(z) = clamp(Lz X S*1, -127, +127), where S% s a statistic
computed during or post-training.

Q-BERT: uniform quantization to {o, ..., 21} with:
o mixed precision (higher Hessian spectrum => higher
precision for layer)
o group precision (each matrix W, W, W, W, is its own group)

89

https://arxiv.org/abs/1910.06188
https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/1909.05840

Quantization

L] (]]]
Wi t h D I St I I Ia t ion Full-precision Quantized Full-precision
Student Student Teacher
Lpred
—————————————————
Zhang et al., 2020
S ' Transformer layer Leym Transformer layer
TernaryBERT: Distillation-aware Ultra-low Bit e e e = - .
BERT Ternarization Forward Distillation loss
W= Q,(w) Lk propagation L = Liypm + Lprea L - .
Embedding Embedding Embedding

Backward propagation, update in full-precision
daL

C+l t t
w'*? = UpdateParameter(w o)

Figure 2: Depiction of the proposed distillation-aware ternarization of BERT model.

90

https://arxiv.org/pdf/2009.12812.pdf
https://arxiv.org/pdf/2009.12812.pdf

Pruning

Source: unsplash.com

91

https://unsplash.com/photos/FTfjMijq-Ws

Pruning

Definition

Pruning removes “unimportant” weights from a network:

a=(W®M)Xl

input

pruning mask

\/

model weight

activation

Main Questions (Hassibi and Stork)

e Which weights should be eliminated?
e How should the remaining weights be adjusted?
e How can such network pruning be done in an efficient way?

92

https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf

Pruning
Early Work

LeCun et al,, 1990

OBD: optimal Brain Damage

Hassibi and Stork, 1993

OBS: Second order derivatives for network

pruning: Optimal Brain Surgeon

Pruning based on second-order derivatives

Main idea:

Start with a “reasonably large” network

Train it to convergence

Prune in multiple iterations, based on second-order derivatives:

o
o

OBD: prune and train
OBS: prune and update weights based on second-order statistics

93

http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf
https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf

Pruning
Early Work

LeCun et al,, 1990

OBD: optimal Brain Damage

Hassibi and Stork, 1993

OBS: Second order derivatives for network

pruning: Optimal Brain Surgeon

Pruning based on second-order derivatives

Main idea:

e Start with a “reasonably large” network

e Train it to convergence
e Prunein multiple iterations, based on second-order derivatives:

o OBD: prune and train
o OBS: prune and update weights based on second-order statistics

Why do we not train this smaller architecture instead?

94

http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf
https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf
https://authors.library.caltech.edu/54983/3/647-second-order-derivatives-for-network-pruning-optimal-brain-surgeon(1).pdf

Pru 1] i ng The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the

The LT H original network after training for at most the same number of iterations.

Searching for Tickets: One-Shot Magnitude Pruning

. . Prune
. -lmt -Traln
Frankle and Carbin, 2018 - M) o W)
m O W,

W
. . L Wo Yt
The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks
— —»
|
v
m'Y @ Wy m® o W@

Frankle & Carbin, 2019
Viz: @RobertTLange

Source: https:/roberttlange.qgithub.io/posts/2020/06/lottery-ticket-hypothesis/ 95

https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Pruning
The LTH

Frankle and Carbin, 2018
The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Searching for Tickets: Iterative Magnitude Pruning

” e m oWy
N .&. - .3%.
]
- T m® o w®
MR
Iterate... :

D T A

Frankle & Carbin, 2019
Viz: @RobertTLange

Source: https:/roberttlange.qgithub.io/posts/2020/06/lottery-ticket-hypothesis/ 96

https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Pruning
The LTH

Frankle et al, 2019

Stabilizing the Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the

original network after training for at most the same number of iterations.

Searching for Tickets: Iterative Magnitude Pruning with Rewinding

(Init] (Train to iter k) (Train to converg.) (Prune
W(l) W(l) “)GW(”

e

Rewnnd

m(l) ® W(l) (l) ® ‘V(Z) (2) ® W(2)

R

Iterate..

.......................................

Frankle et al., 2019
Viz: @RobertTLange

Source: https:/roberttlange.qgithub.io/posts/2020/06/lottery-ticket-hypothesis/ 97

https://arxiv.org/pdf/1903.01611.pdf
https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/

Pruning
The LTH, ctd

Brix et al., 2020
Successfully Applying the Stabilized Lottery

Ticket Hypothesis to the Transformer

Architecture

Sparsity Memory MP LT SLT CLT SLT-MP MP-SLT
BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

0% 234 MB |[263 04.0] 26.8 64.5 3 X b.8 OF. 26.8 64.5
10% 226 MB || 26.8 64.5] 26.7 64.6 na n/al 268 645
20% 206 MB || 26.7 64.5] 26.2 65.3 na n/al 267 645
30% 184 MB || 26.4 65.0] 26.0 65.3 nfa n/a| 264 650
40% 161 MB || 26.5 64.8| 25.8 65.7 na n/al 265 648
50% 137MB || 264 65.0] 254 66.3 26.47 64.97 264 65.0
60% 112MB || 259 65.5] 249 66.5 2641 65.17 259 655
70% 86MB |]25.7 65.8] 242 67.6 26.2' 65.3] 25.6 66.0
80% S9MB |]248 66.8] 23.2 68.4 25.6' 659 246 672
85% 46MB ||239 67.7] 22.3 69.8 24.9' 66.4] 239 679
90% 31 MB |]229 69.0] 209 72.0 23.5" 684 224 698
95% 17MB |]202 729] 18.1 754 20.5% 723 18.5 755
98% 7MB || 158 78.9] 13.3 81.2 16.1F 79.24] 135 826

Table 1: En—De translation: BLEU [%] and TER [%] scores of the final model at different sparsity levels, evalu-
ated on newstest2014. For SLT-MP, models marked with { are trained with SLT pruning, models marked with
1 are trained with MP. For MP-SLT, the MP model with 60% sparsity was used for SLT pruning. For each sparsity

level, the best score is highlighted.

MP = Magnitude Pruning

LT = Lottery Ticket

SLT = Stabilized Lottery Ticket
CLT = Constant Lottery Ticket

98

https://arxiv.org/abs/2005.03454
https://arxiv.org/abs/2005.03454
https://arxiv.org/abs/2005.03454

Pruning

Sanh et al., 2020

Movement Pruning: Adaptive Sparsity by

Fine-Tuning

Movement Pruning

e First-order strategy: “instead of selecting weights that are far from zero, we retain
connections that are moving away from zero during the training process”

e The pruning mask M is learnt together with the model parameters.

o hard version: M = Top (S), where score Sislearntand v is a
hyperparameter.

o softversion: M = (S > 1), where score S is learnt and threshold T is a
hyperparameter.

ge

https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2005.07683

Pruning
& Hardware

Hooker, 2020

The Hardware Lottery

On standard hardware:

Unstructured Structured
Pruning Pruning
Storage v "
Inference X v
Flexibility V X

e “Inmany ways, hardware is catching up to the present state of ML research”

e Thereisresearch for specialized software kernels to support unstructured

Sparsity (see paper for references).

100

https://arxiv.org/pdf/2009.06489.pdf

04
Efficient Attention

101

Recap

The Transformer architecture

multi-head
attention

add & norm

add & norm

multi-head
attention

add & norm

masked
multi-head
attention

x N

102

Recap

The Transformer architecture

Quadratic bottleneck in sequence
length due to multi-head attention

/ add & norm
I dense

add & norm

multi-head
attention

add & norm

add & norm

multi-head
attention

x N

add & norm

masked
multi-head
attention

x N

103

Recap

The Transformer architecture

Quadratic bottleneck in sequence
length due to multi-head attention

This poses a serious problem when
large sequences are required, e.q.:

Long-range dependencies
Character-level models
Speech processing
High-resolution image
processing

/ add & norm
I dense

add & norm

multi-head
attention

add & norm

add & norm

multi-head
attention

x N

add & norm

masked
multi-head
attention

x N

104

Efficient Attention
In the past months, there has been much progress in making self-attention more efficient

OWVe) O(llogl) O(flogl) O(F) O(¢) O(¢) O(¢)

- ’ ’ ’ ’ ’ ¢ time
Sparse Transformer ' Routing Transformer Linformer i Big Bird
(Child et al., 2019) ! (Roy et al, 2020) ! (Wang et al., 2020) i (Zaheer et al., 2020)
Reformer Performer Linear Transformer
(Kitaev et al., 2020) (Choromanski et al., 2020) (Katharopoulos et al., 2020)

105

https://arxiv.org/pdf/1904.10509.pdf
https://arxiv.org/pdf/2001.04451.pdf
https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/2006.03555.pdf
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2007.14062

Efficient Attention
In the past months, there has been much progress in making self-attention more efficient

OWVe) O(llogl) O(flogl) O(F) O(¢) O(¢) O(¢)

- ’ ’ ’ ’ ’ ¢ time
Sparse Transformer ' Routing Transformer Linformer i Big Bird
(Child et al., 2019) ! (Roy et al, 2020) ! (Wang et al., 2020) i (Zaheer et al., 2020)
Reformer Performer Linear Transformer
(Kitaev et al., 2020) (Choromanski et al., 2020) (Katharopoulos et al., 2020)

We are going to cover some ideas that make this possible

106

https://arxiv.org/pdf/1904.10509.pdf
https://arxiv.org/pdf/2001.04451.pdf
https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/2006.03555.pdf
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2007.14062

Beyond a Dense Attention Matrix

Goal:

Approximate the computation of attention

via more efficient operations

Queries

107

Efficient Attention

A wide range of recent techniques!

e Data-Independent Patterns

o Blockwise Transformer (Qiu et al., 2019)

o Sparse Transformer (Child et al., 2019)

o Longformer (Beltagy et al., 2020)
o Big Bird (Zaheer et al., 2020)

Taxonomy inspired by Tay et al., 2020

108

https://arxiv.org/pdf/2009.06732.pdf
https://arxiv.org/abs/1911.02972
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2004.05150
https://arxiv.org/pdf/2007.14062.pdf

Efficient Attention

A wide range of recent techniques!

e Data-Independent Patterns
e Data-Dependent Patterns

o

@)

O

@)

O

Linformer (Wang et al., 2020)
Reformer (Kitaev et al., 2020)

Routing Transformer (Roy et al., 2020)
Clustered Attention (Vyas et al., 2020)

Sinkhorn Transformer (Tay et al., 2020)

Taxonomy inspired by Tay et al., 2020

109

https://arxiv.org/pdf/2009.06732.pdf
https://arxiv.org/pdf/2006.04768.pdf
https://arxiv.org/pdf/2001.04451.pdf
https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/2007.04825.pdf
https://arxiv.org/pdf/2002.11296.pdf

Efficient Attention

A wide range of recent techniques!

e Data-Independent Patterns
e Data-Dependent Patterns
e Kernels and Alternative Attention Mechanisms

o Linear Transformer (Katharopoulos et al., 2020)

o Random Feature Attention (Anonymous, 2020)

o Performer (Choromanski et al., 2020)

o Synthesizer (Tay et al., 2020)

Taxonomy inspired by Tay et al., 2020

10

https://arxiv.org/pdf/2006.16236.pdf
https://openreview.net/pdf?id=QtTKTdVrFBB
https://arxiv.org/pdf/2006.03555.pdf
https://arxiv.org/pdf/2002.11296.pdf
https://arxiv.org/pdf/2009.06732.pdf

Efficient Attention

A wide range of recent techniques!

Data-Independent Patterns
Data-Dependent Patterns
Alternative Attention Mechanisms
Recurrence

o Transformer XL (Dai et al., 2019)

o Compressive Transformers
(Rae et al., 2019)

Taxonomy inspired by Tay et al., 2020

M

https://arxiv.org/pdf/1901.02860.pdf
https://arxiv.org/pdf/1911.05507.pdf
https://arxiv.org/pdf/2009.06732.pdf

Data-Independent Patterns

112

Data-Independent Patterns

Keys _—

Blockwise Patterns Queries

Divide sequence into local blocks and
restrict attention within them

Examples:

Blockwise Transformer (Qiu et al., 2019)

Local Attention (Parmar et al., 2018)

13

https://arxiv.org/abs/1911.02972
https://arxiv.org/abs/1802.05751

Data-Independent Patterns

Strided Patterns

Skip some query/key pairs.

Quadratic in sequence length / stride

Examples:

Sparse Transformer (Child et al., 2019)

Longformer (Beltagy et al, 2020)

Queries

Keys

14

https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2004.05150

Data-Independent Patterns

Diagonal Patterns

Compute attention over the diagonal.

Linear in sequence length and window
size.

Examples:

Longformer (Beltaqy et al, 2020)
Big Bird (Zaheer et al., 2020)

Queries

Keys

15

https://arxiv.org/abs/2004.05150
https://arxiv.org/pdf/2007.14062.pdf

Data-Independent Patterns

Keys _—

Random Patterns Queries

Compute attention over random query/key
pairs.

Linear in number of points.

Examples:

Big Bird (Zaheer et al., 2020)

116

https://arxiv.org/pdf/2007.14062.pdf

Data-Independent Patterns

Global Attention

Applied to one or a few special tokens,
often prepended to the sequence.

Usually combined with other patterns

Examples:

Big Bird (Zaheer et al., 2020)

Longformer (Beltagy et al., 2020)

ETC (Ainslie et al., 2020)

Queries

Keys

17

https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/pdf/2004.05150.pdf
https://arxiv.org/pdf/2004.08483.pdf

Data-Independent Patterns

Combination of Patterns

Combine multiple patterns

(e.g. Global + Diagonal + Random)

Examples:

Big Bird (Zaheer et al., 2020)

Longformer (Beltaqy et al., 2020)

Queries

Keys _—

18

https://arxiv.org/pdf/2007.14062.pdf
https://arxiv.org/abs/2004.05150

Data-Dependent Patterns

19

Data-Dependent Patterns

Buckets

Keys
0i= >, :
Create buckets/clusters and compute 3=0
attention within.

Queries

|

Ideally, buckets should contain the
highests attention weights in the matrix

Examples:

Reformer (Kitaev et al., 2020)

Routing Transformer (Roy et al., 2020)

Attention
head

120

https://arxiv.org/pdf/2001.04451.pdf
https://arxiv.org/pdf/2003.05997.pdf

Data-Dependent Patterns

Buckets: Hashing

Sphere Projected Points Random Rotation 0 Random Rotation 1 Random Rotation 2
Locality-Sensitive Hashing (LSH) /\ x: 021
8,
Key idea: take a random projection
y: 320
matrix R, compute hash for a
vector g through: \
h(x) = arg max([xR; —xR)) /—\ o, © 021
y: 021

Examples:

Reformer (Kitaev et al., 2020)

121

http://web.iitd.ac.in/~sumeet/Slaney2008-LSHTutorial.pdf
https://arxiv.org/pdf/2001.04451.pdf

Data-Dependent Patterns

Buckets: Clustering
E.g. online k-means

Examples:

Routing Transformer (Roy et al., 2020)

Clustered Attention (Vyas et al., 2020)

122

https://arxiv.org/pdf/2003.05997.pdf
https://arxiv.org/pdf/2007.04825.pdf

Data-Dependent Patterns

Sorting and blocking

E.g. Sparse Sinkhorn Attention Queries

Key ideas:

e Adifferentiable sorting network
that learns to rearrange blocked Sorted keys
inputs, using the Sinkhorn
balancing mechanism to create a
permutation matrix

® Attention is computed only on local
neighborhoods (before and after
sorting)

Examples:

Sinkhorn Transformer (Tay et al., 2020)

123

https://arxiv.org/pdf/2002.11296.pdf

Data-Dependent Patterns

Compression

E.g. pooling, strided convolution, low-rank
projections with learnable weights

Examples:

Compressed Attention (Liu et al., 2018)

Linformer (Wang et al., 2020)

Synthesizers (Tay et al., 2020)

Keys

Compressed Keys

Queries

124

https://arxiv.org/pdf/1801.10198.pdf
https://arxiv.org/pdf/2006.04768.pdf
https://arxiv.org/pdf/2005.00743.pdf

Kernels and Alternative
Attention Mechanisms

Kernels and Alternative Attention Mechanisms

Kernels

Recap: attention in its general
form uses a similarity function

¢(Q2, KJ)

Standard transformers use dot
product attention:

(Qi, K;) = Ok
¢ ir V) = €Xp \/g

l
=0

K Vv Q

Attention head

ij

QS(QM KJ)

Zﬁ):O ¢(Q'&7 KP)

126

Kernels and Alternative Attention Mechanisms

l
Kernels O; = Z @iV
—

Recap: attention in its general
form uses a similarity function

¢(Q2, KJ)

However, we can simplify things
with a decomposable kernel:

a;; = ¢(Q27 KJ)
! Zﬁ):O ¢(Q'&7 KP)

¢(QiaKj) = ¢(Qz’)T¢(Kj) K v Q
Attention head

127

Kernels and Alternative Attention Mechanisms

Kernels I & (;. Kj)

O; = Zaijvj (5 =
J=0 ! Z;:O ¢(Q%7 Kp)

Recap: attention in its general
form uses a similarity function

¢(Q%7 Kj)

However, we can simplify things
with a decomposable kernel:

$(Qi, K;) = ¢(Qi)' d(K;)

128

Kernels and Alternative Attention Mechanisms

Kernels I & (;. Kj)

O; = Zaijvj (5 =
J=0 ! Z;:O ¢(Q%7 Kp)

Recap: attention in its general
form uses a similarity function

QS(Q”KJ) lify thi O:; = Z;ZO qb(Ql)Tqb(Kj)vj
e ol LY 0(Q)Te(K;)
o(Qn K;) = $(0) T H(K;) 0, — HQ) T Zimy SEDY;

Q)T Yo d(K;)

129

Kernels and Alternative Attention Mechanisms

Kernels I & (;. Kj)

O; = Z%Vj (5 =
J=0 ! Z;:O ¢(Q%7 Kp)

Recap: attention in its general
form uses a similarity function

’L7K]
e o T 0Q) UV,
owever, we can simpli ings i
with a decomposablepkei/'nelz z;:o ¢(Q1)T¢(Kj)
Independent of query!
T l /”,,
5(Qu K;) = 6(Q0) 9K Q) oy ORIV -

O; = I e
P(Q;) |Z¢:o ¢(KJ)| ‘

130

Kernels and Alternative Attention Mechanisms

Kernels In vectorized form:

Recap: attention in its general
form uses a similarity function

H(Q.) O =¢Q)o(K)'V

However, we can simplify things
with a decomposable kernel:

1
I
I
Compute this d’' x d matrix first

$(Qi, K;) = ¢(Qi)' d(K;)

131

Kernels and Alternative Attention Mechanisms

Kernels In vectorized form:

Recap: attention in its general
form uses a similarity function

H(Q.) O =|p(Q)p(K)"'V

However, we can simplify things :
with a decomposable kernel: !

Then this | x d matrix

$(Qi, K;) = ¢(Qi)' d(K;)

132

Kernels and Alternative Attention Mechanisms

Kernels

This allows us to compute attention in linear
time with respect to sequence length!

In Katharopoulos et al., 2020:

0 = $(Q)(¢(K)'V)

o(x) =elu(x) + 1 = max(a(e® —1),0) + 1

133

https://arxiv.org/pdf/2006.16236.pdf

Kernels and Alternative Attention Mechanisms

Kernels

0,

H(Q)(O(K) V)

Random Feature Attention (Anonymous, 2020)

Performer (Choromanski et al., 2020)

Random features can be used to generate an
unbiased estimation of the standard softmax
function!

134

https://openreview.net/pdf?id=QtTKTdVrFBB
https://arxiv.org/pdf/2006.03555.pdf

Kernels and Alternative Attention Mechanisms

Performer: Generalized Attention and FAVOR (Choromanski et al., 2020)

Rethink attention as a;; = g(Q; YK (Q,, K].T)h(KjT) , parametrized by a kernel K

and functions gand h

This work presents an unbiased, low-variance approximation of attention via random feature map
decompositions, with linear time and space complexity.

. -

-

. & O(L*d) \\‘ 2~ O(Lmd) B > %
LS/ /) | . N : | \
E-o 1 1 : E : | : /: 2 i
: ' = T 1 T |
: Lix 1D éZ%L'xd::‘ir' 835 k] |3 g E
I ’ « ! | | I |
! - | L i —

5 /- E (X)) i

""""""""""""""""""""""""""""" 135

https://arxiv.org/pdf/2006.03555.pdf

Kernels and Alternative Attention Mechanisms

Synthesizers (Tay et al. 2020)

Are token-to-token interactions really
necessary?

Random attention matrices are
surprisingly competitively!

Low-rank alternatives can be used

(a) Transformer

Output

(b) Synthesizer (Dense)

Dense Synthesizer

Ld {E?

Output

.

Input X

(c) Synthesizer (Random)

Output

=

Random Synthesizer

136

https://arxiv.org/abs/2005.00743

Recurrence

137

Recurrence

Transformer-XL (Daj et al.. 2019)

How can models process long sequences
under limited hardware constraints?

A naive approach is to split the sequence
into multiple smaller ones and process
them separately

Nl
A\
N4\

Nolel
A\
NN

~
Current
segment

138

https://arxiv.org/abs/1901.02860

Recurrence

Transformer-XL (Daj et al.. 2019)

A better way is to add a segment-level
recurrence mechanism

Representations from the previous segment
are cached and re-used (no gradients
flowing at training)

This increases receptive field proportionally
to the depth of the transformer

Nodoh

Previous
segment (fixed)

Current
segment

139

https://arxiv.org/abs/1901.02860

Recurrence

Compressive Transformers
(Rae et al.. 2019)

Dual memory system:

- Primary mem. contains activations
from previous segment

- Secondary mem. is compresses
activations from all previous segments

compression

/‘\\
0000-0000

Secondary
(compressed)
memory

XXX
J

Primary
memory

N

J

~
Current
segment

140

https://arxiv.org/pdf/1911.05507.pdf

Recurrence

Compressive Transformers
(Rae et al.. 2019)

When a new segment comes:

- Primary memory is updated with
activations from previous segment

- Secondary memory is updated with
the activations from the primary
memory, where a compression
function is applied (e.g. pooling,
convolutions, most used)

compression

/‘\\
0000-0000

Secondary
(compressed)
memory

XXX
J

Primary
memory

N

J

~
Current
segment

141

https://arxiv.org/pdf/1911.05507.pdf

Overview

Benchmarking

How do these models compare in practice?

The Long-Range Arena: a benchmark for
efficient transformers

143

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

How do these models compare in practice? List operations example:

INPUT: [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1 5 8 9, 2]] OUTPUT: 5
The Long-Range Arena: a benchmark for

efficient transformers

Longer sequences: TK-16K
5 tasks:

- List operations (e.g. max, min, median)
- Byte-level text classification

- Byte-level document retrieval

Image classification

Long-range spatial dependency

144

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

How do these models compare in practice?

The Long-Range Arena: a benchmark for
efficient transformers

Longer sequences: TK-16K
5 tasks:

- List operations (e.g. max, min, median)
- Byte-level text classification

- Byte-level document retrieval

- Image classification

Long-range spatial dependency

List operations example:

INPUT:

(MAY A
|MAKL 4

(positive)

(negative)

OUTPUT: 5

145

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

The Long-Range Arena: a benchmark for efficient transformers

LRA agg. performance

60 B Local Attention
B Linear Transformer
| Reformer
g 45 B Sparse Transformer
& B Linformer
E [Sinkhorn Transformer
:’-}- 30 - [Performer
% [Synthesizer
§ Longformer
15 [Transformer
[BigBird
0

Model

146

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

The Long-Range Arena: a benchmark for efficient transformers

Time per step on 4x4 TPU V3 chips (lower is better)

1.00 B Reformer
B Transformer
| BigBird
B Synthesizer

0.75

[Sinkhorn Transformer
0.50 [Local Attention
(71 Linformer

0.25 [Linear Transformer

Time per step (seconds)

Performer

0.00

Sequence length

147

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

The Long-Range Arena: a benchmark for efficient transformers

Peak Memory Usage per device (lower is better)

10.0 B Transformer
B Synthesizer
| BigBird
Reformer

Sinkhorn Transformer

Performer

Peak memory usage (GB)

0
&
[Local Attention
&
0

Linear Transformer

Linformer

1K 2K 3K 4K

Sequence length

148

https://openreview.net/forum?id=qVyeW-grC2k

Benchmarking

The Long-Range Arena: a benchmark for
efficient transformers

Putting it all together (size of circles
corresponds to memory footprint)

Note: these results might be sensitive to
implementation details, hardware and
hyper-parameters.

LRA Score

56

54

52

50

48

46

44

Big Bird

) Transformer

Q Synthesizer

® Llnformer

()Reformer Sinkhorn

50

Performer

Linear Transformer

Local Attention

@

100 150 200 250
Speed (examples per sec)

300

350

149

https://openreview.net/forum?id=qVyeW-grC2k

Key Takeaways

There has been a surge in ideas for improving the efficiency of attention and transformers, especially for
improving their capacity to handle long sequences.

150

Key Takeaways

There has been a surge in ideas for improving the efficiency of attention and transformers, especially for
improving their capacity to handle long sequences.

There has been good progress in recent months: we are now able to compute attention in linear time with

respect to sequence length, leading to large speed improvements without much performance drops for
large sequences.

151

Key Takeaways

There has been a surge in ideas for improving the efficiency of attention and transformers, especially for
improving their capacity to handle long sequences.

There has been good progress in recent months: we are now able to compute attention in linear time with

respect to sequence length, leading to large speed improvements without much performance drops for
large sequences.

Future improvements in hardware, e.g. on the efficiency of sparse computations, may make these ideas
even more appealing in the long run (Hooker, 2020)

152

https://arxiv.org/abs/2009.06489

Key Takeaways

There has been a surge in ideas for improving the efficiency of attention and transformers, especially for
improving their capacity to handle long sequences.

There has been good progress in recent months: we are now able to compute attention in linear time with
respect to sequence length, leading to large speed improvements without much performance drops for
large sequences.

Future improvements in hardware, e.g. on the efficiency of sparse computations, may make these ideas
even more appealing in the long run (Hooker, 2020)

The ideas presented in this section are often orthogonal to each other and to other efforts presented in
this tutorial, and can be combined for more efficient models.

153

https://arxiv.org/abs/2009.06489

05
Case Studies \

154

Efficient
Language models

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models

- Natural Language Processing with Small Feed-Forward Networks

Source: unsplash.com

156

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models

- Natural Language Processing with Small Feed-Forward Networks

- The Evolved Transformer

-

\

NAS

(Neural Architecture
Search)

157

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer

- PRADO + pQRNN

Source: unsplash.com

158

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer
- PRADO + pQRNN

- MobileBERT

Source: unsplash.com

159

https://unsplash.com/photos/FTfjMijq-Ws
https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer

- PRADO + pQRNN

- MobileBERT

- Lite Transformer with Long-Short Range Attention

Source: unsplash.com

160

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer
- PRADO + pQRNN

- MobileBERT

- Lite Transformer with Long-Short Range Attention

- MicroNet for Efficient Language Modeling

Source: unsplash.com

161

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer
- PRADO + pQRNN
- MobileBERT
- Lite Transformer with Long-Short Range Attention
- MicroNet for Efficient Language Modeling

- Hardware-Aware Transformers

-

\

NAS

(Neural Architecture
Search)

162

Towards more efficient NLP

1) Core techniques

2) Efficient attention

3) Case studies more expensive operation

a) Efficient Language Models
PointwiseFullyConnected

- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer equivalent to
~PRADO + pQRNN '
Convolution

- MobileBERT
- Lite Transformer with Long-Short Range Attention implemented as
- MicroNet for Efficient Language Modeling :

GroupedConvolution
- Hardware-Aware Transformers []

- SqueezeBERT .. .
more efficient operation

163

Towards more efficient NLP

1) Core techniques
2) Efficient attention
3) Case studies
a) Efficient Language Models
- Natural Language Processing with Small Feed-Forward Networks
- The Evolved Transformer
- PRADO + pQRNN
- MobileBERT
- Lite Transformer with Long-Short Range Attention
- MicroNet for Efficient Language Modeling
- Hardware-Aware Transformers

- SqueezeBERT

- DelighT: Very Deep and Light-weight Transformer

164

Natural
Language
Processing with
Small
Feed-Forward
Networks

Botha et al., 2017
arxiv.org/abs/1708.00214

Useful accuracies on a variety of tasks

Great runtime and memory value in resource
constrained environments

Features defined over character n-grams, embeddings
learned from scratch

Random feature mixing hashing for small feature
vocabularies

Quantization for embedding weight compression

165

https://arxiv.org/abs/1708.00214

Natural
Language
Processing with
Small
Feed-Forward
Networks

Botha et al., 2017
arxiv.org/abs/1708.00214

softmax

/ RelLU activated

A, E———. ‘ } fully connected
(©000)(0000)0O000)OCO00): ko

GH!EDI%W
[OOOOOCT)OOOOO] hi

T W

@ @ @ @ reshaping
[(I (I
qu
no que Discrete feature
ue ueu embedding
eu T matrix
Ebigrams at Etrigrams
no queue at

Figure 1: An example network structure for a model using
bigrams of the previous, current and next word, and trigrams
of the current word. Does not illustrate hashing.

166

https://arxiv.org/abs/1708.00214

Natural
Language
Processing with
Small
Feed-Forward
Networks

Botha et al., 2017
arxiv.org/abs/1708.00214

Example result:

POS Tagging, compared to BTS (Gillick et al., 2016)

+0.3% accuracy (95.4%, near state-of-the-art)
6x fewer parameters
36x fewer FLOPs

167

https://arxiv.org/abs/1708.00214
https://www.aclweb.org/anthology/N16-1155/

The Evolved
Transformer

Soetal, 2019
arxiv.org/abs/1901.11117

Consistent improvement over Transformer on well
established WMT and LM1B.

NAS to search Transformer alternatives

Large search space from feed-forward sequence
models

Evolutionary architecture search

168

https://arxiv.org/abs/1901.11117

Transformer Encoder Block Evolved Transformer Encoder Block O Activation
T h e EVO |Ve d O Normalization

O Wide Convolution
Transformer

O Attention
O Non-spatial Layer

Conv 1x1 : 2048

Soetal, 2019 (Conv 1x1:2048) (Conv 3x1:256 |
arxiv.org/abs/1901.11117 (8 Head Seff Attention : 512)

(Gated Linear Unit: 512]

169

https://arxiv.org/abs/1901.11117

The Evolved
Transformer

Soetal, 2019
arxiv.org/abs/1901.11117

Transformer Decoder Block

Conv 1x1: 512

Conv 1x1: 2048

(8 Head Attend to Encoder : 512 |

[8 Head Self Attention : 512]

Conv 1x1:512

Conv 1x1: 2048

(8 Head Attend to Encoder : 512 |

(8 Head Self Attention : 512 |

Evolved Transformer Decoder Block

@
Swish

@
(8 Head Attend to Encoder : 512 |

®

(8 Head Self Attention : 512 |

®

Sep Conv 7x1: 512

RELU
Sep Conv 7x1 : 256
('sep Conv 11x1: 1024 |

()

[16 Head Self Attention : 512] [8 Head Attend to Encoder : 512]
\

Layer Norm

170

https://arxiv.org/abs/1901.11117

Same quality as original “big” Transformer with 37.6% fewer
The Evolved parameters and outperforms Transformer by 0.7 BLEU at a

Transformer mobile-friendly model size of ~7M params.
Soetal, 2019 -
arxiv.org/abs/1901.11117 Bl - T -)

Million Parameters

Figure 4. Performance comparison of the Evolved Trans-
former against the Transformer across number of parame-
ters.

171

https://arxiv.org/abs/1901.11117

PRADO +
PQRNN

Kaliamoorthi et al., 2019-2020

www.aclweb.org/antholoqy/D19-1506/

https://ai.googleblog.com/2020/09/adva

ncing-nlp-with-efficient-projection.html

PRADO: Projection Attention Networks for Document
Classification On-Device

Combines trainable projections with attention and
convolutions

With only 200 Kilobytes in size, outperformed prior CNN
and LSTM models and achieved near state of the art
performance on multiple long document classification
tasks.

172

https://www.aclweb.org/anthology/D19-1506/
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html

PRADO +
PQRNN

Kaliamoorthi et al., 2019-2020

www.aclweb.org/antholoqy/D19-1506/

https://ai.googleblog.com/2020/09/adva

ncing-nlp-with-efficient-projection.html

£ =E(FY £ =E (7Y £" = Exp[F7]

7(7(o

Figure 1: PRADO Model Architecture

173

https://www.aclweb.org/anthology/D19-1506/
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html

PRADO +
PQRNN

Kaliamoorthi et al., 2019-2020

www.aclweb.org/antholoqy/D19-1506/

https://ai.googleblog.com/2020/09/adva

ncing-nlp-with-efficient-projection.html

PQRNN

e A projection layer with a quasi-RNN encoder

e Same projection layer used in PRADO

e o }QRNN x N

pQRNN

e pQRNN is also quantized

174

https://www.aclweb.org/anthology/D19-1506/
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html

PRADO + Model Comparison
PQRNN 0.98

@
0.97 BERT (440M)
®
0.96
PQRNN (1.3M)
O
-]
<
0.95
0.94
. . 0.93
Kaliamoorthi et al., 2019-2020 0.1MB 1MB 10MB 100MB 1000MB

www.aclweb.org/antholoqy/D19-1506/

Model size (log scale)

https://ai.googleblog.com/2020/09/adva

ncing-nlp-with-efficient-projection.html

175

https://www.aclweb.org/anthology/D19-1506/
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html
https://ai.googleblog.com/2020/09/advancing-nlp-with-efficient-projection.html

MobileBERT

Sun et al., 2020
arxiv.org/abs/2004.02984

Designed for running on mobile phones with acceptable
latency

Inverted-Bottleneck BERT teacher

LARGE
Distilled into a compact MobileBERT student

As deep as BERT ,ncer but narrower

Task-agnostic compression (task specific fine-tuning
performed directly on the compact model)

176

https://arxiv.org/abs/2004.02984

MobileBERT

Sun et al., 2020
arxiv.org/abs/2004.02984

feature map

transfer
_____________________ >
/ | Add & Norm]{—\\ /[\
/ N\ Linear
Add & Norm N S e Tl
> Add &4 Norm !
1
Feed :
Forward !
Add & Norm Lx | L—ouoo—A x| Me—=A -
> Add&Norm]
Multi-Head A attention
Attention Multi-Head | _transfer | | Multi-Head
Attention Attention
L 7, | b 4 1
-
o — s ——
Embeddin; Embedding Embedding

(@) (b) (c)

Figure 1: Illustration of three models: (a) BERT; (b) Inverted-Bottleneck BERT (IB-BERT); and (c) MobileBERT.
In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows. MobileBERT is trained by
layer-to-layer imitating IB-BERT.

177

https://arxiv.org/abs/2004.02984

MobileBERT

Sun et al.,
arxiv.org/abs/2004.02984

2020

BERTLARGE MobileBERT MobileBERTnNy
hembedding 1024 128
embedding no-op 3-convolution
hinler 1024 512
Linear | Dineut 512] 512
houtput 128 1 28
hinpue | [7 1024 \] 512 128
MHA #Head 16 4
houtput 1024 128 128
bod 24 24 x 24
2 Binpus 1024 \ |© 128 X
FFN heen 4096 512 | x4 512
- 1024 | 128
_ - 128) (128)
Linear ?
Tissiges (512] 512
#Params 334M 25.3M 15.1IM

178

https://arxiv.org/abs/2004.02984

MobileBERT

Sun et al., 2020
arxiv.org/abs/2004.02984

e 4.3x smaller, 5.5x faster than BERT
e //.7 GLUE score ~ BERT
e 90.0/79.2 SQUAD v1.1/v2.0 F1 ~ BERT

e 62 ms latency on a Pixel 4 phone

BASE

BASE

BASE

CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE

#Params #FLOPS Latency GLUE
85k 67k 3.7k 5.7k 364k 393k 108k 2.5k
BERTgAse 109M 225B 342ms | 521 935 889 858 712 84.6/834 90.5 664 | 783
MobileBERT1iny 15.1IM 31B 40ms | 467 91.7 879 80.1 689 81.5/81.6 895 651 758
MobileBERT 253M 57B 62ms | 505 928 888 844 702 83.3/826 90.6 66.2| 77.7
MobileBERT w/o OPT| 25.3M 57B 192ms | 51.1 926 88.8 84.8 705 843/834 91.6 70.4| 78.5

179

https://arxiv.org/abs/2004.02984

Lite Transformer
with Long-Short
Range Attention

Wu et al., 2020
arxiv.ora/abs/2004.11886

Long-Short Range Attention (LSRA)
o Local context modeling by convolution

o Long distance modeling by attention

2.5x reduced computation vs Transformer base

18.2x smaller with pruning and quantization

0.5 higher BLUE compared to Evolved Transformer,
without the 250 GPU-year NAS cost.

180

https://arxiv.org/abs/2004.11886

MicroNet for NeurlPS 2019 MicroNet Challenge’

Efficient Language modeling track: train efficient word-level language
Language models on the Wikitext-103 Dataset? (word-level perplexity <
Modeling 35)

Score = Normalized Parameter Storage +

Normalized Math Operations

(Normalized by LSTM Rae et at, 2018 arxiv.org/abs/1803.10049)

Yan et al., 2020

‘ . §))
arxiv.org/abs/2005.07877 Gale et al 2019, micronet-challenge.qgithub.io

2Merity et al 2016, arxiv.org/abs/1609.07843

181

https://arxiv.org/abs/2005.07877
https://arxiv.org/abs/1803.10049
https://micronet-challenge.github.io/
https://arxiv.org/abs/1609.07843

e Core Language Model

MicroNet for f
.« e Transformer-XL
Efficient -
o Short Context Group Joint Optimization
Language . .
Modeling o Adaptive Embedding and Softmax
o Hebbian Updates
e Compression Techniques
o Knowledge Distillation
o Pruning
Yan et al,, 2020 o Quantization

arxiv.org/abs/2005.07877

182

https://arxiv.org/abs/2005.07877

MicroNet for
Efficient
Language
Modeling

Yan et al., 2020
arxiv.org/abs/2005.07877

90-fold reduction in parameter size and a 36-fold
reduction in math operations compared to the MicroNet

baseline

183

https://arxiv.org/abs/2005.07877

e Neural Architecture Search
Hardware-Aware

o Train a SuperTransformer to cover a large space
Transformers

o Evolutionary search with hardware latency
constraint to find a specialized SubTransformer

e Speed up and smaller size over baseline Transformer,
and low search cost

Wang et al., 2020
arxiv.org/abs/2005.14187

184

https://arxiv.org/abs/2005.14187

Hardware-Aware
Transformers

Wang et al., 2020
arxiv.org/abs/2005.14187

SuperTransformer

Evolutionary Search with
Hardware Constraints

SubTransformers (Weight-Sharing)

Specialized Deployment is Efficient

| l l

Different Hardware 1111 Hardware
Latency
- = I ANSY), Feedback
) - = &S
i
loT CPU GPU
TinyML Deeper Wider

Figure 1: Framework for searching Hardware-Aware
Transformers. We first train a SuperTransformer that
contains numerous sub-networks, then conduct an evo-
lutionary search with hardware latency feedback to find
one specialized SubTransformer for each hardware.

185

https://arxiv.org/abs/2005.14187

Hardware-Aware SubTransformer search
Transformers

e Evolutionary search

e Find a satisfactory SubTransformer given a latency
requirement

e Latency predictor trained for offline latency estimation
(fast and accurate)

Wang et al., 2020
arxiv.org/abs/2005.14187

186

https://arxiv.org/abs/2005.14187

Hardware-Aware WMT’14 results on Raspberry Pi-4:

r ' [
Transformers e 3x speedup, 3.7x smaller size over baseline

Transformer

e 2.7x speedup, 3.6x smaller size over Evolved
Transformer with 12,041x less search cost

Wang et al., 2020
arxiv.org/abs/2005.14187

187

https://arxiv.org/abs/2005.14187

e Replace several operations in self-attention layers with

SqueezeBERT

grouped convolutions

e Much faster inference on mobile devices

landola et al., 2020
arxiv.ora/abs/2006.11316

188

https://arxiv.org/abs/2006.11316

SqueezeBERT

landola et al., 2020
arxiv.ora/abs/2006.11316

Previous takeaways from CV into NLP
(already adopted in MobileBERT)

o Bottleneck layers
o High-information flow residual connections

New contributions from CV incorporated
into SqueezeBERT's self-attention

o Convolutions

o Grouped convolutions

189

https://arxiv.org/abs/2006.11316

SqueezeBERT * Resulls

o 4.3x faster than BERT-base (while MobileBERT is

reported as 3.0x faster than BERT-base) on a Pixel 3
phone.

o GLUE score 76.9 (vs 79.0 for BERT-base)

landola et al., 2020
arxiv.ora/abs/2006.11316

190

https://arxiv.org/abs/2006.11316

DeLighT: Very
Deep and
Light-weight
Transformer

Mehta et al., 2020
arxiv.org/abs/2008.00623

More efficient parameter allocation within and across

Transformer blocks

Similar performance with substantially fewer parameters

compared to baseline transformers.

191

https://arxiv.org/abs/2008.00623

DeLighT: Very
Deep and
Light-weight
Transformer

Mehta et al., 2020
arxiv.org/abs/2008.00623

i : 1
Input (d,,-dimensional) o m l l dm 1 dm .5
g g 3 g
g /A E £ 2
2 g 5 3 d, d, d,
5] B s =
2 2 i Em Fe e
£ : B = E d,
5 I < | Attention ops: 2
3 — = z| O(d,n?
o ' Output (d,-dimensional) = (v) E Attention ops:
2
(a) DeFINE [32] = £l o@d.n?)
Input (d,,,-dimensional) E: A
£ Z =
g e, S z
I3 5 % B FFN params:
m S Z = 2
"N @ 2]
g & g :
1 =1 d
g E 5 Z n
3 - 'u!; pis | D b
& = 3 epth=4+ N
Output (d,-dimensional) [0
(b) DExTra (Ours) (c) Transformer block [1] (d) DeLighT block (Ours)

Figure 1: (a, b) compares the DeFINE unit with DExTra. Compared to the DeFINE unit, DExTra uses group
linear transformations with more groups to learn wider representations with fewer parameters. Different colors
are used to show groups in group linear transformations. For simplicity, we have not shown feature shuffling
in (b). (¢, d) Block-wise comparison between the standard transformer block and the DeLighT block. With
DExTra, the number of operations in computing attention are reduced by half while the number of parameters

(and operations) in the FFN are reduced by 16 x. Layers with learnable parameters (Linear and DExTra) are
shown in color. The shape of linear layers indicate their operation (expansion, reduction, etc.).

192

https://arxiv.org/abs/2008.00623

A
DelLighT: Very L o fix .
Deep and 2 10
2 | 1.8x

Light-weight e | e - -

-@®- WMT'16 En-Ro Model
Transformer B WP EnDe| e DelighT

201 -A- WMT'14 En-Fr == Transformer
20 40 60

Parameters (in million)

(b) DeLighT vs. Transformer-XL

344 [) ;
‘@ \, |-®- DeLighT (Ours)
>‘32,,§, ottt =@ Transformer-XL
= N
Mehta et al., 2020 5 30{-—% L NS
arxiv.org/abs/2008.00623 o) N
[)] \\\\ \\\\
& 26 \\ : Sud
241 L e e

20 40 60 80 100 120 14
Parameters (in million)

193

https://arxiv.org/abs/2008.00623

Retrieval

Towards more efficient NLP

1) Core techniques
prediction

3) Case studies T

a) Efficient Language Models / \

b) Retrieval

2) Efficient attention

- Sentence Embeddings using Siamese BERT-Networks

Encoder Encoder

195

Towards more efficient NLP

1) Core techniques
2) Efficient attention k2
3) Case studies it \lhl, L -2
a) Efficient Language Models
b) Retrieval

- Sentence Embeddings using Siamese BERT-Networks

- Generalization through Memorization: Nearest Neighbor Language Models

Source: unsplash.com

196

https://unsplash.com/photos/FTfjMijq-Ws

Towards more efficient NLP

1) Core techniques

2) Efficient attention

-ﬁf?lﬂi"f‘!»-'r"‘\i‘LI [Wl J, i y—

3) Case studies
a) Efficient Language Models
b) Retrieval

- Sentence Embeddings using Siamese BERT-Networks

- Generalization through Memorization: Nearest Neighbor Language Models

- REALM: Retrieval-Augmented Language Model Pre-Training

Source: unsplash.com

197

https://unsplash.com/photos/FTfjMijq-Ws

e Cross-attention, single tower models such as BERT have set

Sentence-BERT: state-of-the-art results on sentence-pair tasks such as STS.

Sentence

Embeddings e For sentence-retrieval tasks, cross-attention model requires

. . expensive re-encoding the entire retrieval corpus.
using Siamese s < >

BERT-Networks e Sentence-BERT modifies the pretrained encoder to perform
a single inference per input sentence, followed by cheap
pairwise comparisons e.g. cosine similarity.

Reimers et al., 2019
arxiv.org/abs/1908.10084

198

https://arxiv.org/abs/1908.10084

Sentence-BERT:
Sentence
Embeddings
using Siamese
BERT-Networks

Reimers et al., 2019
arxiv.org/abs/1908.10084

prediction

T

regression layer

T

Encoder

T

[CLS] S [SEP] Sg [SEP]

Cross-attentional

(Single tower)

prediction

Encoder Encoder

! T

[CLS] Sp [SEP] [CLS] Sg [SEP]

Dual-encoder

(Two tower)

199

https://arxiv.org/abs/1908.10084

e Finding the most similar sentence in a collection of 10,000

Sentence-BERT: sentences on a V100 GPU

Sentence o BERT (cross-attention): 65 hours

Embeddings o SBERT (dual encoder): 5 seconds

using Siamese

BERT-Networks e Can also be combined with Maximum Inner Product Search

tools for sublinear scaling

o https://qithub.com/google-research/google-research/tree/master/scann

o https://github.com/facebookresearch/faiss

o https://github.com/spotify/annoy

Reimers et al., 2019
arxiv.org/abs/1908.10084

200

https://arxiv.org/abs/1908.10084
https://github.com/google-research/google-research/tree/master/scann
https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy

Generalization
through
Memorization:
Nearest
Neighbor
Language
Models

Khandelwal et al., 2019
arxiv.org/abs/1911.00172

Introduces KNN-LMs, which extends a pre-trained neural
language model (LM) by linearly interpolating it with a
k-nearest neighbors (kNN) model.

Allows for efficiently scaling up to larger training sets and

for effective domain adaptation

201

https://arxiv.org/abs/1911.00172

Classification Interpolation
pLM(Y) p(y) = AP () + (1= NpLu(v)
Test Context Target Representation B
_ Hawaii |0.2 Hawaii | 0.6
o q=f(z) . .y
lllinois {0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jolel)

Google Research
202

Training Contexts Targets || Representations Distances
C; v; ki = f(ci) di = d(q, k;)

Obama was senator for | lllinois
Barack is married to | Michelle

Obama was born in | Hawaii —> 5

Obama is a native of | Hawaii

Classification Interpolation
t pLM(Y) p(y)= AP (v)+ (1= NpLvi(y)
Test Context Target Representation
T q=f(z) Hawaii {0.2 Hawaii | 0.6
lllinois |0.2 - llinois [0.2
Obama’s birthplace is ? (Jolel)

Google Research
203

Aggregation
PRNN(Y) = Z Ly—y;p(k;)

Training Contexts Targets || Representations Distances Nearest k Normalization
C; Uy ki = f(ci) di = d(q, ki) p(ki) o< exp(—d;)
Obama was senator for | lllinois 4 Hawaii | 3 Hawaii |0.7
Barack is married to | Michelle 100 Wz lllinois | 4 lllinois 0.2
Obama was born in | Hawaii 5 > Hawaii |5 Hawaii |0.1
Obama is a native of | Hawaii 3 Classification
4 pLM(Y)
Test Context Target Representation B
T = f(a) Hafwa.u 0.2
lllinois |0.2
Obama’s birthplace is| ~ ?

Hawaii
lllinois

0.8
0.2

A4

Interpolation
P(y)=ApinN(Y)+ (1= A)pLu(y)

14

Hawaii
lllinois

0.6
0.2

Google Research

204

Training Data Datastore Perplexity (|)

Dev Test
i i WIKI-3B - 16.11 15.17
Generallzatlon WIKI-100M - 20.99 19.59
through WIKI-100M WIKI-3B 1461 13.73
Memorlzatlon: Table 3: Experimental results on WIKI-3B. The model trained on 100M tokens is augmented with
a datastore that contains about 3B training examples, outperforming the vanilla LM trained on the
N earest entire WIKI-3B training set.
Neighbor
21
Language
guag "
Models 19
2 — Wiki-100M
e -=- Wiki-3B
815 =6 KNN-LM (Wiki-100M + kNN)
Khandelwal et al., 2019 o
arxiv.org/abs/1911.00172 15
14
0.0 0.5 1.0 1.5 2.0 25 3.0

Size of datastore (in billions)

(a) Effect of datastore size on perplexities.

"205

https://arxiv.org/abs/1911.00172

REALM:
Retrieval-Augmented
Language Model

Pre-Training

Guu et al,, 2020
arxiv.org/abs/2002.08909

Language model pre-training can capture world
knowledge by storing it implicitly in the network
parameters, but storage space is limited by the network
size (prompting for ever-larger networks).

REALM introduces a latent knowledge retriever to
augment the language model, and shows for the first
time how to pretrain it in an unsupervised manner.

206

https://arxiv.org/abs/2002.08909

REALM:
Retrieval-Augmented
Language Model
Pre-Training

Guu et al,, 2020
arxiv.org/abs/2002.08909

: Unlabeled text, from pre-training corpus (X') -,
E The [MASK] at the top of the pyramid (z)

Textual retrieve
knowledge - - - - - Neural Knowledge Retriever ~ pg(zlil‘)j

corpus (Z)

Retrieved document zmsessssassamsnsasas:
The pyramidion on top allows for less !
material higher up the pyramid. (z)

..

- Query and document —~------coooeoooooo - -

' [CLS] The [MASK] at the top of the pyramid E

EESEP] The pyramidion on top allows for less
material higher up the pyramid. (z,z)

—
End-to-end backpropagation
.._._._._._._._._._._._._._._._.-._._.)

...........................

Figure 1. REALM augments language model pre-training with
a neural knowledge retriever that retrieves knowledge from a
textual knowledge corpus, Z (e.g., all of Wikipedia). Signal
from the language modeling objective backpropagates all the way
through the retriever, which must consider millions of documents
in Z—a significant computational challenge that we address.

207

https://arxiv.org/abs/2002.08909

REALM:
Retrieval-Augmented
Language Model
Pre-Training

Guu et al,, 2020
arxiv.org/abs/2002.08909

® Fine-tuning for open-domain question answering

po —s;'r_n;yie— =(Supervised
- Input query -------oooei A , data

1
1

. what’s the angle of an equilateral triangle? (17) !

/

[Neural Knowledge Retriever (6)]«-re-tflf‘fe- knowledge
| corpus (2)
{(2,2)

\[Knowledge—Augmented Encoder (d))]

208

https://arxiv.org/abs/2002.08909

State-of-the-art Open-QA, with a relatively small model
size (e.g. REALM outperforms T5-11b while being 30
times smaller)

REALM: °
Retrieval-Augmented

Language Model
Pre-Training

Table 1. Test results on Open-QA benchmarks. The number of train/test examples are shown in paretheses below each benchmark.
Predictions are evaluated with exact match against any reference answer. Sparse retrieval denotes methods that use sparse features such
as TF-IDF and BM25. Our model, REALM, outperforms all existing systems.

5 3.3 NQ wQ CT
Name Architectures Pre-training (19k/4k) (3k/2k) (1K /1K) # params
BERT-Baseline (Lee et al., 2019) Sparse Retr.+Transformer BERT 26.5 17.7 21.3 110m
TS5 (base) (Roberts et al., 2020) Transformer Seq2Seq T5 (Multitask) 27.0 29.1 - 223m
T5 (large) (Roberts et al., 2020) Transformer Seq2Seq T5 (Multitask) 29.8 322 - 738m
TS5 (11b) (Roberts et al., 2020) Transformer Seq2Seq TS5 (Multitask) 34.5 374 - 11318m
DrQA (Chen et al., 2017) Sparse Retr.+-DocReader N/A - 20.7 25.7 34m
G tal 2020 HardEM (Min et al., 2019a) Sparse Retr.+Transformer BERT 28.1 - - 110m
uuetal, GraphRetriever (Min et al., 2019b) GraphRetriever+Transformer BERT 31.8 31.6 - 110m
. PathRetriever (Asai et al., 2019) PathRetriever+Transformer MLM 32.6 - - 110m
arxiv.org/abs/2002.08909 OROQA (Lee et al., 2019) Dense Retr.+Transformer ICT+BERT 33.3 36.4 30.1 330m
Ours (X = Wikipedia, Z = Wikipedia) Dense Retr.+Transformer REALM 39.2 40.2 46.8 330m
Ours (X = CC-News, Z = Wikipedia) Dense Retr.+Transformer REALM 40.4 40.7 429 330m

209

https://arxiv.org/abs/2002.08909

REALM:
Retrieval-Augmented
Language Model
Pre-Training

Guu et al,, 2020
arxiv.org/abs/2002.08909

e State-of-the-art Open-QA, with a relatively small model
size (e.g. REALM outperforms T5-11b while being 30
times smaller)

NQ Exact Match

®T5 ® REALM @ ORQA

50

40 e
30 e
20

10

2000

4000 6000 8000 10000
params (millions)

210

https://arxiv.org/abs/2002.08909

06

Scaling in Practice

21

Why Do We Need Scale?

Scale More Important Than Architecture

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

Test Loss 5.4

4.8 1

4.2 1 LSTMs

3.6 1
1 Layer

2 Layers
4 Layers

P

3.01 Transformers

2.4

105 106 107 108 109 Kaplan et al., 2020: arXiv

Parameters (non-embedding) 213

https://arxiv.org/abs/2001.08361

Attention Size vs Model Size vs Test Loss

7.5+

6.0

Test Loss
o
ol

S
S

et B i

10 105 105 107 10® 10°
Parameters (excl. embedding)

Token 1/1024
Token 2/1024
Token 4/1024
Token 8/1024
Token 16/1024
Token 64/1024

- Token 256/1024

Token 1024/1024
Token 1/8
Token 2/8
Token 4/8
Token 8/8

Kaplan et al., 2020: arXiv

214

https://arxiv.org/abs/2001.08361

Attention vs Fully Connected Time for Various Transformers

Fully Connected Time (%)

1.00

0.75

0.50

0.25

0.00

Time Spent in Fully Connected vs Attention Layers

50%

77%

78%

62% 62%

BERT base BERT large

T5 3B

T511B GPT32.7B GPT36.7B GPT3 13B GPT3 175B

Model

215

Conclusions From Measuring Scaling

e Performance increases further and further the more parameters a model has
e Attention is very important for efficiency: Transformers scale better than LSTMs
e Attention has diminishing returns (on general “internet data”)

e Size of data and model are more important than architecture

216

Practical Considerations

Experimental vs Theoretical Perspective

Theoretical:

e FLOPS/Operation Complexity/Memory: O(n) better than O(n*2); 100 FLOPS better than 1000

e (Possibly) Analysis of occupancy, memory access patterns for certain hardware
Experimental:

e Three criteria:
a. Does it fit into my GPU/TPU/Accelerator?
b. Is it faster than other methods?
c. Can most people use it (+62% of PhD students)?

e Device oriented walltime/memory: CPU for inference, GPU/TPU for training

218

e Algorithm: (1) Divide matrix B into chunks of 128; (2) take
the maximum element, set others to zero; (3) perform
matrix multiply A*B=C and skip all zero elements

Theory vs
Practice

Reduction in Computation Time
== GPU == CPU

1.00

0.75

0.50

Reduction by (%)

0.25

0.00
10 1000 100000 10000000

Number of Elements (n)

219

Theory vs Practice

]41 EfficientNet-B6

AmeobaNet-A _ m ===
A5

—-—__—

AmoebaNet-C
=P

Y)
© /’ NASNet-A L.oo*""" SENet
;\-O\ ,,, en*?® g ‘
3 /,’ s s 2S AT °
® ™ ResNeXt-101
S 80 2 e
g - .+* Inception-ResNet-v2
< " JE
- .+ Xception
g
= 781 eResNet-152
D s Topl Acc. FLOPS
qC) B DenseNet-201 ResNet-152 (Xie et al., 2017) 77.8% 11B
> % EfficientNet-B1 79.1% 0.7B
g 76 I ‘e ResNeXt-101 (Xie et al., 2017) 80.9% 32B
= " * ResNet-50 EfficientNet-B3 81.6% 1.8B
[SENet (Hu et al,, 2018) 82.7% 42B
e . NASNet-A (Zoph et al., 2018) 80.7% 24B
_ Inception-v2 EfficientNet-B4 82.9% 4.2B
74 1 é AmeobaNet-C (Cubuk et al., 2019)| 83.5% 41B
NASI\iet-A EfficientNet-B5 83.6% 9.9B
ResNet-34 . , , , . .
0 5 10 15 20 25 30 35 40 45

FLOPS (Billions)
Tan & Le, 2019: arXiv

Jeremy Howard
@jeremyphoward

Has anyone seen EfficientNet train faster than
resnet50 to the same accuracy? | know the paper says
it can be faster for inference, and it has less params,
but experiments I've seen for training so far show it
train much slower.

e.g. RN50 is 67% for this:

sdoria/EfficientNet

Converting EfficientNet to Pytorch for use with fastai -
sdoria/EfficientNet

& github.com

6:26 AM - Jun 5, 2019 - Twitter Web App

53 Retweets 230 Likes

O 0 L 4 &

Replying to @jeremyphoward

All of the models in this family (MNASNet, FBNet, MobileNet-v3,
EfficientNet) are pretty challenging and slow to train to spec'd accuracy.
Epoch wise, finding the right hyper-params/techniques, and GPU memory
use... tricks that work with ResNet, etc. also don't work as well here

Q1 n 2 Q &

1 Ross Wightman @wightmanr - Jun 5, 2019

https://arxiv.org/abs/1905.11946

GPU Architecture

i1

Memory Controller

3
g
2
:
3
H
2
8
B

Memory Controller

emory Controller

[

PCI Express 4.0 Host Interface
GigaThread Engine with MIG Control

High-Speed Hub

£
NVLink NVLink

solionu0d Koway | sai0nu00 Aioway PIOos Kiowany

Jajonu0D Aiowsp

soiionu0d Kioway | saijosuos Aiowsy

!

i

i

1l

il

INT32INT32
N3z iNT3z
W32 NTs2
T3z iNT32
INT32 INT32
INT32 INT3z
INT32 T3z
INT32 INT32

W u
sT ST

INT32 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INTs2 iNTs2
INT32 iNTs2
T3z iNT32
32 NTs2

w W
sT ST

L0 Instruction Cache
Warp Scheduler (32 thread/cik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32
TENSOR CORE
FP32 FP32
FP32 FP32
FP32FP32 FPos
FP32 FP32 Fros

W W W W L LD
ST ST ST ST ST ST

LO Instruction Cache.
Warp Scheduler (32 thread/cik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FPs2 Fros
FP32FPs2 Fros
FP32 FP32
FP32 FP32
TENSOR CORE
FP32 FP32
FP32 FP32
FP32 FP32
FP32 FP32

w
sT st

 192KB L1 Data Cache / Shared Memory.

Tex

INT32 INT32
INT32 INT32
INT32 INT32
INT2 INT32
INT32 INT32
INT32 INT32
INT32 INT32
INTs2 INT3Z

W W
sT ST

INTs2 INT3Z
INT32 INT32
INTs2 INTSZ
INT32 INT3Z
INTs2 T3
INT32 INT32
INT32 INTSZ
INTs2 INT32

W W
vl

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FPS2FPs2 Fres
FP32FP32 Fros
FP32FPs2 Fpes
FP32FP32 Fres
TENSOR CORE
FP32FP32 FPes
FP32FP32 FPes4
FPS2FPS2 Fros
FP32FP32 FPes

W W W W W L
ST ST ST ST 8T ST SFU

LoInstruction Cache
Warp Scheduler (32 thread/cik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FPS2FPs2 Fros
FP32FP32 FPes4
FP32FPs2 Fres
FP32FP32 Fres
TENSOR CORE
FP32 P32 Fres
FP32 P32 FPos
FP32FP32 FPes
FP32 FP32 Fros
W L W Wi W W
sl kavll Earll Esrl el e

Tex

Ampere Architecture (NVIDIA)

221

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Occupancy vs Memory Bandwidth vs FLOPS

1.

Occupancy FLOPS Memory

Bandwidth

Occupancy FLOPS Memory
Bandwidth

Matrix multiplication

Performance

Convolution

Performance

222

Occupancy vs Memory Bandwidth vs FLOPS

Sparse Matrix multiplication

Occupancy FLOPS Memory
Bandwidth

Performance

Depthwise Convolution

Occupancy FLOPS Memory

Bandwidth Performance

223

Occupancy vs Memory Bandwidth vs FLOPS

1

Occupancy FLOPS Memory

Bandwidth

Occupancy FLOPS Memory
Bandwidth

Depthwise Convolution
(custom implementation)

Performance

Depthwise Convolution

Performance

224

BERT Large vs BERT Base

Mini-batch Time in Seconds for Transformer Models (Training)
1000

334s

100

10

Seconds

0.1

BERT BERT T53B T511B GPT3 GPT3 GPT3 GPT3 MoE MoE
base large 2.7B 6.7B 13B 175B 150B 600B

Transformer Model

BERT Base is 3.1x
smaller than BERT
Large but only trains
1.5x faster.

BERT Base is too
small to saturate
modern GPUSs.

225

Better Performance at Lower Occupancy

1.

Occupancy FLOPS Memory
Bandwidth

Occupancy FLOPS Memory
Bandwidth

Volkov, 2010

Performance

Performance

Matrix multiplication

Matrix Multiplication
(lower occupancy, higher instruction parallelism)

226

https://www.nvidia.com/content/GTC-2010/pdfs/2238_GTC2010.pdf

Conclusion

e Occupancy, and FLOPS/memory bandwidth utilization are important for runtime performance
e Understanding of hardware needed for performance analysis

e Even with deep understanding of hardware, it is difficult to analyze performance theoretically
e Runtime performance of different algorithms can often only be understood if they are run on

the actual device

e Conclusion: To estimate deep neural network runtime performance, it is best to run the network

and measure its performance directly.

227

Memory Optimizations

Resources: Academia vs Industry

Tim Dettmers
@Tim_Dettmers

| want to get an accurate picture of GPU resources
that PhD students have access to. PhD students,

please respond and share with other students.

"What is the largest GPU system that you have access

to?"

Please pick option +16 GPU only if your cluster has a

+50 Gb/s interconnect
1-2 GPU desktop
3-4 GPU desktop
8 GPU server
+16 GPU HPC cluster

756 votes - Final results

43.1%

18.8%

21.6%

16.5%

Maximum Model Size by Date

== Parameters (bn) Trendline for Parameters (bn)

100000

10000

1008

1000 %

07/01/2018

01/01/2019 07/01/2019 01/01/2020 07/01/2020 01/01/2021

07/01/2021

229

Memory Optimizations Overview

e Memory Swapping/Memory Paging
e FP16/BF16 training

e Gradient checkpointing

e Gradient accumulation

e Reversible residual connections

230

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

o0000000

Active
Layer

Pupipeddi et al., 2020: arXiv

Swap in to GPU

231

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

00000000

Active .
Layer Swap in to GPU

Pupipeddi et al., 2020: arXiv
232

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

00000000

Active _
Layer Swap in to GPU

Pupipeddi et al., 2020: arXiv
233

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

o0000000

Pupipeddi et al., 2020: arXiv

Swap in to GPU

Active
Layer

234

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

o000000O

Active

Swap in to GPU Layer

Pupipeddi et al., 2020: arXiv
235

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

e Swap-out activations / weights to CPU once a layer is completed
e Swap-in activations /weights to GPU before a layer is started
e Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

B CPU = GPU

o0000000

Active

Swap in to GPU Layer

Pupipeddi et al., 2020: arXiv
236

https://arxiv.org/abs/2002.05645

CPU<->GPU Memory Swapping / Paging

Swap-out activations / weights to CPU once a layer is completed

Swap-in activations /weights to GPU before a layer is started

Exact timing of swap-in/swap-out depends on layers size and layer forward/backward time

Benefits:

O

O

60-80% memory reduction
Network usually not slower. If it is slower, swap-int layers earlier (less memory
reduction)

Faster training due to larger batch size for very large models

237

Mixed Precision Training (FP16+FP32) / BF16 training

Mixed Precision Training:

Keep 32-bit master weights

Do forward pass with 16-bit

Scale 16-bit loss to prevent under/overflow

Compute gradients

Update 32-bit weights; copy 32-bit weights to 16-bit buffers

BrainFloat-16 Training:

e Range:FP16 +-65504; BF16 & FP32 -+3e"38
e (asteverythingto BF16
e Train normally (no under/overflow due to larger range)

Benefits:

e Faster training, depending on network about 2x speedup

e Usually save some memory, especially if your activations are large Micikevicius et al., 2018: ariv

238

https://arxiv.org/abs/1710.03740

Gradient Checkpointing: Forward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet

Active
Layer

Chen et al., 2016: arXiv

239

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Forward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet

0000080 e

Active
Layer

Chen et al., 2016: arXiv
240

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

oXeX JoNoN JoN

Missing gradients! Active
Recompute from last checkpoint Layer
with forward pass

Chen et al., 2016: arXiv
241

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass

Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

SNeN ooy T X _

1
1

Active

Forward pass to compute
Layer

activation gradient

Chen et al., 2016: arXiv

242

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

D000 eee

Active
Layer

Chen et al., 2016: arXiv
243

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

O0@00O@®OC

Active
Layer

Chen et al., 2016: arXiv
244

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

00008

Active
Layer

Chen et al., 2016: arXiv
245

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

DO 0eee

Active
Layer

Chen et al., 2016: arXiv
246

https://arxiv.org/abs/1604.06174

Gradient Checkpointing: Backward

Do not store activation gradients in the forward pass
Recompute activation gradients in the backward pass by restarting a forward pass from a

checkpoint node

O Dropped B Checkpointed = Not Computed Yet ™ Has Gradient

OO0O@®@O0OO0OC

Active
Layer

Chen et al., 2016: arXiv
247

https://arxiv.org/abs/1604.06174

Gradient Checkpointing

Benefits:

Trade computation to reduce memory footprint

Best used for functions that are cheap to compute but have a large activation gradient (ReLU,

layer norm, softmax)

Very beneficial for nonlinear activation functions

Easy to use in PyTorch (torch.utils.checkpoint) and TensorFlow 2.0 (recompute_grad (nightly))

248

https://pytorch.org/docs/stable/checkpoint.html
https://github.com/tensorflow/tensorflow/blob/2cb8b4ab8f038f5c6de2381ad215fdaa6fd2bc22/tensorflow/python/ops/custom_gradient.py#L351

Reversible Residual Connections

e Divide network output and residual connection into two halves. Compound them into a
reversible structure:

Forward Backward
1 = z1 + F(x2) T2 = y2 — G(y1)
Y2 = T2 + G(y1) B = Y1, — F|Tz)

Benefits:

e Saves some memory for free (if your framework supports it, e.g. JAX)
e Usually, gradient checkpointing should be prefered:

o Can save more memory due to being more general.

o Easy to implement. Supported by major frameworks.

Gomez et al., 2017: arXiv

249

https://arxiv.org/abs/1707.04585

Gradient Accumulation

e Split larger mini-batches into “micro-batches”

e Do standard forward/backward passes with micro-batches, but do not update the weights right away (and
do not reset the gradient on the weights)

e Accumulate the gradient on the weights for all micro-batches

e Update the weights once enough micro-batches have been computed

Benefits / Tradeoffs:

e Aslong as your model runs with batch size 1 you can simulate any batch size
e Easytoimplement and can reduce memory footprint significantly
e Slow if micro-batch size is very small

e Canimprove data parallel performance significantly (speedups) especially for very large models

250

Parallelism

Parallelism Overview

e Data parallelism

e Model parallelism

e Pipeline parallelism

e ZeRo parallelism optimizations

e 3D parallelism

252

Data Parallelism

|dea: Keep the same model parameters across multiple accelerators. Feed them different mini-batches and
average the gradient across accelerators.

Forward

DeviceO

Layer 2

Layer 1

Krizhevsky 2014 (arXiv)

Device1

Layer 2

Layer 1

Same model
parameters for
each device

Different input
mini-batches

Backward
Device0 Device1
Layer 2 Layer 2
Layer 1 Layer 1
Sync
Grad Grad
Update Update

253

https://arxiv.org/abs/1404.5997

Model Parallelism

ldea: Keep the same mini-batch across multiple accelerators; split the layers parameters across all devices and
synchronize layer outputs after each layer.

Forward Backward
Device0 Svne Device1 Device0 Device1
Y | |
Layer 2 Layer 2 Layer 2 Layer 2
_______ Different model ~leunel—
SN parameters for Syne
Layer 1 Layer 1 each device Layer 1 Layer 1
\Sync —
Grad Grad
Same input
Krizhevsky 2014 (arXiv) mini-batches Update Update

254

https://arxiv.org/abs/1404.5997

Pipeline Parallelism

Device 3

Device 2

Device 1

Device 0

Krizhevsky 2014 (arXiv); Harlap et al., 2018 (arXiv); Huang et al., 2018 (arXiv)

Idea: Split network by depth into k pieces onto k accelerators. Each accelerator holds 1/kth of layers. Use
micro-batches to overlap computation and communication.

Loss
T T
F3 Ba
t ¥
F2 BZ
§ i
F1 B1
o N

Gradients

S

'F. B s

F, B. Update

F. y\ B, Update

= _ Time B |
(b)

Evo [|Fasi] Faa | Fuaf Baa | 1Bsa [V Bat|| Bss Update

Fonl| Easll Ezaf Fos Bas | Baz | Bar | Bao Updato

EallralrclEsl ——— [ec e e e Update

Fao | Fos | Foz | Fas \ Bubble J Bes | Bz | By | Bea | uptese

Worker
Worker
Worker

255

https://arxiv.org/abs/1404.5997
https://arxiv.org/abs/1806.03377
https://arxiv.org/abs/1811.06965

ZeRO Parallelism Optimizations

ldea: Gradients, parameters, and optimizer state only needed for active layer. We distribute the state across all

GPUs and gather them together when we need them (when they become “active”).

Memory k=12
g d Y=7.5B
gpuy gpy; gPUy_1 L L N,=64
Baseline (2+2+K)+W | 12068
K+«W¥
1.4GB
P 29+ 2% + = | 3146
2+ K)*W¥
P - - - 2+ 24+ K)*¥ 1.9GB
0s+g+p N,
" Parameters Gradients Optimizer States

Rajbhandari et al., 2020 (arXiv)

256

https://arxiv.org/abs/1910.02054

3D Parallelism

Ve

(" Pipeline Stage 0

_ Network Layers0-7)

1111

Data Parallel Rank O

a Pipeline Stage 1 P

IIII

;I_/
_ Network Layers 8-15

(Pipeline Stage 2

_ Network Layers 16-23

111

(" Pipeline Stage 3

l/
_ Network Layers 24-31)

TIEY T9EE BEGE Q6NE

/" Pipeline Stage 0

'/
_ Network Layers 0-7 y

111

Data Parallel Rank 1

/" Pipeline Stage 1

l/
_ Network Layers 8-15)

I

" Pipeline Stage 2

1

%_/
_Network Layers 16-23

. Pipeline Stage 3

D3

~—

a

I./
_ Network Layers 24-31)

Microsoft Blog Post

(paper coming soon?)

bipeline

ZeRO

Model

257

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/#toc-heading-0

Why 3D Parallelism?

Model parallelism bad if batch size is too large. Communication cannot be overlapped with computation.
Data parallelism bad if the batch size is too small.

Pipeline parallelism decreases mini-batch size through micro-batches.

Pipeline parallelism increase min-batch size through aggregation of micro-batches.

Pipeline parallelism allows for simple overlap of communication and computation..

Microsoft Blog Post
(paper coming soon?) 258

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/#toc-heading-0

Efficiency Optimizations

Larger Batch Size

e GPUs are more efficient if fully utilized. That usually only happens if batch size is large

e GPUs run better if the mini-batch dimension is 32 or larger

e Often you can achieve faster training by using a memory efficiency technique which slows
down training but enables training with larger batch size

e Larger batch sizes enables larger learning rates. While computation is slower, training might be

faster.

260

Fused Kernels if groupl

grad.add (group['weight de '], p.data)

Decay the first and second moment running average coefficient
exp avg.mul (betal).add (1 - betal, grad)
exp avg sq.mul (beta2).addcmul (1 - beta2, grad, grad)
if amsgrad:
Maintains the maximum of all 2nd moment running avg. till now
torch.max(max exp avg sq, exp avg sq, out=max exp avg sq)
Use the max. for normalizing running avg. of gradient
denom = (max exp avg sq.sqrt() / math.sqrt(bias correction2)).add (group|['e 1)
else:
denom = (exp avg sq.sqrt() / math.sqrt(bias correction2)).add (group|

group['lr'] / bias correctionl

p.data.addcdiv (-step size, exp avg, denom)

e Adam with 10"9 parameters:
o 14 read/writes
o 32-bit 109 parameters = 4 GB
o Normal Adam: GPU with 600 GB/s -> 14*4/600 = 100ms
o Fused Adam: 6ms

261

Mixture of Experts

Mixture of Experts: Overview

-

/MoE layer)
G(x),| |G(X)p1
r'd
Expert 1 Expert n

/

/ X
G(x) = Softmax(KeepTopK (H(x),k))

Shazeer et al., 2017: arXiv

Lepikhin et al., 2020: arXiv

| FFN(z) = max(0, W1 + b1)Wa + ba

263

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668

Seconds

Transformers Mini-batch Time

Mini-batch Time in Seconds per 1 Billion Parameters (Training)

25

BERT BERT T5 3B T5 11B GPT3 GPT3 GPT3 GPT3 MoE
base large 2.7B 6.7B 13B 175B 150B

Model

MoE
600B

264

Mixture of Experts: Balancing and Specialization v1

Version 1 (Shazeer et al., 2017):

Initialize W_g and W_noise with zeros, so outputs are driven by standard normal noise. This
guarantees balancing across experts at the start of training.

The noise also helps to decrease early advantage of previously picked experts.

G(x) = Softmax(KeepTopK (H (z),k))

H(z); = (z - Wy); + StandardNormal() - Softplus((x - Whoise)i)

265

https://arxiv.org/abs/1701.06538

Mixture of Experts: Balancing and Specialization v1

Version 1 (Shazeer et al., 2017):

An additional balancing loss assigns high loss to experts which have very high probability. This
prevents failure cases where an expert is always picked with 100% probability.

Importance(X) = Z G(x)
zeX

Limportance (X) = 'wimporta:nce : CV(ITerO’I't(ITLCEZ(X))Q

Coefficient of variation: CV(X) = std(X)/mean(X)

266

https://arxiv.org/abs/1701.06538

Mixture of Experts: Balancing and Specialization v1

Version 1 (Shazeer et al., 2017)

Importance loss can be satisfied by picking a subset of experts. To prevent this degeneration we want
to pick all experts with roughly the same probability over time.

If we view the softplus term as something analogous to a standard deviation and the mean softmax
as the expected value, we can express an approximate probability for this with a CDF of the normal
distribution.

H(z); = (z - Wy)i + StandardNormal() - Softplus((z - Whoise)i)

Pla,i) = (I)((ZL' - Wy)i — kth_excluding(H (z), k, z))

Softplus((x - Whoise)i)
Load(X); =) P(x,i)

rzeX

Lload(X) = Wjoad * CV(LOCLd(X))2

267

https://arxiv.org/abs/1701.06538

Mixture of Experts: Balancing and Specialization v2

Version 2 (Lepikhin et al., 2020):

No noise. Initialize layers normally. Keep track of Ce, how many times each expert was used for the
sequence S. With the mean gate probability of T1e we can now define a balancing auxiliary loss:

eau:c = Me (Ce/S)
L= enll r k * eaua:

Where k is a constant loss weight (a good value is 0.1; usually between 0.07 and 1.0)

268

https://arxiv.org/abs/2006.16668

Mixture of Experts: Balancing and Specialization v2

Version 2 (Lepikhin et al., 2020):

e Random dispatch: Use 2nd expert proportionally to the softmax gate probability.

e Have a frequency cutoff — a token budget — for each expert. If this budget is exceeded the
expert degenerated to a zero matrix. This effectively reduces the output of the MoE layer to zero
and thus only the residual connection output around the MoE layer is fed to the next layer.

269

https://arxiv.org/abs/2006.16668

Mixture of Experts: Balancing and Specialization

Many cases of expert degeneration:

1. Overbalancing: All experts are approximately equally used. However, gate probability
approaches 1/#Experts. No expert is better than another expert.

2. Underbalancing: The same top-k experts are used for every token. This leads to two strong
experts, but all other experts do not learn anything and are “wasted capacity”.

3. Sequence-level degeneration: Model balances experts by using each expert for a particular
sequence index. For example, for indices 0, 1, 2, 3 always experts E3, ET, E2, EO. This leads to
sequence experts, but not content experts.

270

Seconds

Mixture of Experts: Benefits

Mini-batch Time in Seconds per 1 Billion Parameters (Training) ° Works well on diverse data like

25 .- . .
multilingual machine translation

e (Can be difficult to train due to
= BT e - balancing/specialization issues
e Only faster than transformers if you
can run it with a large enough
batch size to saturate distributed

2.0

15

1.0

- experts
. e If you scale the model across a
0.39 cluster, you will need excellent
0 i 012 I interconnect performance
bae e o P ST S7p T Teb 1sop 600w (TPU v4 Pod, NVIDIA SuperPod)

Model

Shazeer et al., 2017: arXiv
Lepikhin et al., 2020: arXiv 271

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2006.16668

07
Closing Notes \

272

Why we should strive for efficiency

Our field has seen a dramatic increase in scale in the past 2 years.

Striving for efficiency means caring about:

1) Costs

3

)

2) Accessibility
) Production needs
)

4) The sustainability of this growth

273

Closing Notes

In this tutorial, we covered a wide range of ideas, applications and practical considerations that helps us
build more efficient systems, including:

1

Core efficiency techniques

Case studies of efficient models

)
2) Efficiency improvements to attention mechanisms
3)

)

4) Practical considerations for scaling models

274

We hope you
enjoyed it and
learned something g

new!
I L

Thank youl!

bit.ly/2SmMhKY7

Google Research UNIVERSITY of

WASHINGTON ~ UWNLP

https://bit.ly/2SmhKY7

