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Abstract

Open-vocabulary models like CLIP achieve high accuracy across many image
classification tasks. However, there are still settings where their zero-shot perfor-
mance is far from optimal. We study model patching, where the goal is to improve
accuracy on specific tasks (i.e., patching tasks) without degrading accuracy on
tasks where performance is already adequate (i.e., supported tasks). Given a task
to be patched, we first fine-tune without introducing new parameters, then inter-
polate the fine-tuned model weights with the model weights before fine-tuning.
We explore model patching on nine tasks where zero-shot CLIP performs poorly,
observing that patching increases accuracy by 15 to 60 percentage points while
preserving accuracy on ImageNet within one percentage point of the zero-shot
model. Additionally, we find that patching is more effective for larger models,
demonstrate that a single model can be patched on multiple tasks, and identify
cases of broad transfer, where patching on one task can increase accuracy on other
tasks even when the classes are not shared. Finally, we investigate applications
beyond standard benchmarks, including a patch which makes CLIP less susceptible
to typographic attacks. Our findings demonstrate that it is possible to expand
the set of tasks on which open-vocabulary models achieve high accuracy without
re-training them from scratch.

1 Introduction

Open-vocabulary models are characterized by their ability to perform any image classification task
based on text descriptions of the classes [51]. Thanks to advances in large-scale pre-training, recent
examples of open-vocabulary models such as CLIP and BASIC have demonstrated impressive
performance on a variety of tasks without fine-tuning on task-specific data (i.e., in a zero-shot setting)
[52, 29, 51, 82, 1, 80]. For instance, the largest zero-shot CLIP model from Radford et al. [52]
matches the ImageNet accuracy of a ResNet-50 trained on 1.2 million ImageNet images [14, 23].

Nevertheless, current open-vocabulary models still face challenges. The same CLIP model that
matches a ResNet-50 on ImageNet has lower MNIST accuracy than simple logistic regression in
pixel space. Moreover, even when zero-shot models achieve good performance, they are usually still
outperformed by models trained or fine-tuned on specific downstream tasks.

∗Equal contribution. Code available at https://github.com/mlfoundations/patching.
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Figure 1: Patching open-vocabulary models by lin-
early interpolating weights. Given a patching task,
we wish to improve accuracy without degrading perfor-
mance on supported tasks, where accuracy is already ade-
quate. When interpolating weights of fine-tuned models
and zero-shot (unpatched) models, there are intermedi-
ate solutions where accuracy improves on the patching
task without reducing accuracy on supported tasks. Re-
sults are shown for CLIP models [52], averaged over nine
patching tasks (Stanford Cars, DTD, EuroSAT, GTSRB,
KITTI distance, MNIST, RESISC45, SUN397 and SVHN
[33, 11, 24, 66, 21, 37, 7, 12, 78, 48]) and five supported
tasks ImageNet, CIFAR-10, CIFAR-100, STL-10 and
Food101 [14, 34, 12, 5]. Patching is conducted separately
on each patching task and results are averaged across ex-
periments. The dashed lines illustrate vertical movement
from the unpatched models and horizontal movement
from the fine-tuned models.

To address these issues, several authors have proposed methods for adapting zero-shot models to a
task of interest using labeled data [76, 85, 20, 83, 35, 68]. A common practice is to fine-tune the
zero-shot model on the task of interest [76, 51]. However, fine-tuned models suffer from catastrophic
forgetting [43, 71, 19, 31], performing poorly on tasks where the zero-shot model performed well
[2, 76, 51]. Additionally, fine-tuning typically uses a task-specific classification head, sacrificing the
text-based API that makes open-vocabulary models so appealing. Whereas an open-vocabulary model
can perform any classification task in a zero-shot fashion, a fine-tuned model with a task-specific
head can only process the specific task that it was fine-tuned on. This specialization can prevent
knowledge obtained by fine-tuning on one task from transferring to other related tasks with different
classes.

A less common alternative would be to add data from the downstream task to the pre-training dataset
and train a new open-vocabulary model from scratch. The resulting model could still perform any
classification task, and zero-shot performance may improve on related tasks. However, training large
image-text models from scratch can require hundreds of thousands of GPU hours [52, 51, 80], which
makes this approach practically infeasible in most settings.

In this paper, we study patching open-vocabulary models at the task level, where the goal is to
increase accuracy on new target tasks without reducing accuracy on other tasks.1 Patching aims to
combine the benefits of fine-tuning and re-training from scratch: improved performance on the task of
interest, maintaining the open vocabulary flexibility, transfer between tasks, and fast adaptation time.
Motivated by these goals, we extend existing fine-tuning techniques [76] to open-vocabulary settings,
where the class space is not fixed. In particular, we show that a simple two-step procedure is effective
for patching models: first, fine-tune on the task without introducing any task-specific parameters;
then, linearly interpolate between the weights of the model before fine-tuning and the weights after
fine-tuning. Linearly interpolating neural network weights [47, 18, 49] has been previously used to
improve accuracy on a single task [26, 75] or robustness to distribution shift [76].

With this procedure, accuracy can substantially improve on new tasks without degrading accuracy on
unrelated tasks, as illustrated in Figure 1. For instance, patching a CLIP ViT-L/14 [52] independently
on nine image classification tasks [33, 11, 24, 66, 21, 37, 7, 78, 48] improves accuracy by 15 to 60
percentage points compared to the unpatched model, while accuracy on ImageNet [14] decreases by
less than one percentage point. We also observe a promising trend: patching becomes more effective
with model scale (Section 4.1).

Beyond single tasks, we show that models can be patched on multiple tasks (Section 5). When patch-
ing on nine image classification tasks simultaneously, a single CLIP ViT-L/14 model is competitive
with using one specialized model for each task—the average accuracy difference is less than 0.5
percentage points.

1The term patching is borrowed from software development terminology, drawing inspiration from recent
work which conceptualizes developing machine learning models like open-source software [53, 57, 42, 67].
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Moreover, our patching procedure enables broad transfer (Section 6): accuracy on related tasks can
increase, even when the class space changes. For instance, we partition EuroSAT [24], a satellite
image dataset, into two halves with disjoint labels. Patching a ViT-L/14 model on the first half
improves accuracy on the second half by 7.3 percentage points, even though the classes are unseen.

Finally, we investigate model patching on case studies including typographic attacks [22], counting
[30], and visual question answering [4] (Section 7). For instance, patching using synthetic typographic
attacks leads to a model that is less susceptible to typographic attacks in the real world, improving its
accuracy by 41 percentage points.

2 Method
This section details our method for patching models on a single and multiple tasks.

Patching on a single task. Given an open-vocabulary model with weights θzs and a patching task
Dpatch, our goal is to produce a new model θpatch which achieves high accuracy on Dpatch without
decreasing model performance on tasks where accuracy is already acceptable. We let Dsupp denote a
representative supported task where model performance is adequate, and later show that the method
is stable under different choices of Dsupp (Section 4.2). The two-step procedure we explore for
producing θpatch is given below.

Patching procedure.
Step 1. Fine-tune θzs on training data from Dpatch to produce a model with weights θft.
Step 2. For mixing coefficient α ∈ [0, 1], linearly interpolate between θzs and θft to produce
θpatch = (1− α) · θzs + α · θft. The mixing coefficient is determined via held-out validation
sets for Dsupp and Dpatch. We refer to the resulting model as θpatch.

Patching on a multiple tasks. In practice, we often want to improve model accuracy on multiple
patching tasks D(1)

patch, ...,D
(k)
patch, which can be accomplished with straightforward modifications to

the procedure above. We explore three alternatives and examine their relative trade-offs in Section 5.
The three alternatives are:

• Joint patching, where we merge all the patching tasks D(i)
patch into a single task Dpatch before

running the patching procedure;

• Sequential patching, where we iteratively repeat the patching procedure above on each new
task D(i)

patch and let θzs ← θpatch after each completed iteration;

• Parallel patching, where we apply the first step on each task in parallel to produce fine-tuned
models with weights θ(1)ft , ..., θ

(k)
ft . Then, we search for mixing coefficients αi to produce

θpatch = (1−
∑k

i=1 αi) · θft +
∑k

i=1 αi · θ(i)ft .

For joint and parallel patching we assume access to held-out validation sets for all tasks, while in
sequential patching we only assume access to held-out validation sets from the tasks seen so far.
Unless otherwise mentioned we pick the mixing coefficient α that optimizes average accuracy on the
held-out validation sets from the supported and patching tasks.

3 Experimental setup
This section details the primary tasks and models considered, in addition to the fine-tuning and
evaluation protocols.

Tasks. We consider a diverse set of image classification tasks from Radford et al. [52], including
Stanford Cars [33], CIFAR10 [34], CIFAR100 [34], Describable Textures (DTD) [11], EuroSAT
[24], Food101 [5], ImageNet [14], German Traffic Sign Recognition Benchmark (GTSRB) [66],
KITTI distance [21], MNIST [37], RESISC45 [7], STL10 [12], SUN397 [78] and SVHN [48]. In
most experiments, we use ImageNet as a representative supported task, although we explore other
supported tasks in Section 4.2. The categorization into patching tasks or supported tasks is based on
the difference in accuracy between the zero-shot model and a model specialized to the task as a proxy
of how far the zero-shot model is from optimal. Tasks where linear probes from Radford et al. [52]
outperform the zero-shot model by over 10 percentage points are categorized as patching tasks (Cars,
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Figure 2: Patching models on a single task. When interpolating weights of unpatched and fine-tuned
models, there is often an intermediate solution where accuracy improves on the task of interest
without reducing accuracy on a representative supported task, ImageNet.

DTD, EuroSAT, GTSRB, KITTI, MNIST, RESISC45, SUN397 and SVHN), and the remaining as
supported tasks (CIFAR10, CIFAR100, Food101, ImageNet, and STL10). We investigate additional
patching tasks as case studies in Section 7, and provide further details in Appendix A.

Models. We primarily use CLIP [52] pre-trained vision transformer (ViT) models [15]. Unless other-
wise mentioned our experiments are with the ViT-L/14 model, while Section 4.2 studies ResNets [23].

Fine-tuning on patching tasks. Unless otherwise mentioned, we fine-tune with a batch size of 128
for 2000 iterations using learning rate 1e-5 with 200 warm-up steps with a cosine annealing learning
rate schedule and the AdamW optimizer [39, 50] (weight decay 0.1). When fine-tuning, we use the
frozen final classification layer output by CLIP’s text tower so that we do not introduce additional
learnable parameters. This design decision keeps the model open-vocabulary and does not harm
accuracy, as discussed in in Appendices B and C.

Evaluation. We use accuracy as the evaluation metric unless otherwise stated. We use the term
combined accuracy to refer to the average of the mean accuracy on the patching tasks and the mean
accuracy on the supported tasks.2

4 Patching models on a single new task
As shown in Figure 2, when patching a model on a single task, we interpolate the weights of the
zero-shot and fine-tuned model, producing a model that achieves high accuracy on both the patching
task and the supported task. Concretely, the y-axis displays accuracy on the patched task while the
x-axis displays accuracy on a supported task, ImageNet, for different mixing coefficients α. On the
nine tasks, patching improves the accuracy of ViT-L/14 by 15 to 60 percentage points, while accuracy
on ImageNet decreases by less than one percentage point. Linearly interpolating weights allows

2In other words, (EDsupp [Acc(θ,Dsupp)]+EDpatch [Acc(θ,Dpatch)])/2, where Acc(θ,Dsupp) and Acc(θ,Dpatch)
are accuracies on supported tasks and patching tasks, respectively.
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Figure 3: Larger models are easier to patch (left). For larger models, the unpatched and fine-tuned
model are more similar with respect to their representations (center) and weights (right). Model scale
is measured in Giga Multiply-Accumulate operations (GMACs).

practitioners to control the accuracy trade-off on the patching and supported tasks without re-training
a new model.

4.1 The effect of scale on patching
We consistently observe that patching is more effective for larger models. Our findings are aligned
with those of Ramasesh et al. [54], who observed that larger models are less susceptible to catastrophic
forgetting. This section formalizes and provides insights for these observations.

Measuring the effectiveness of patching. We measure the effectiveness of patching via the differ-
ence in accuracy between a single model and two specialized models that achieve the best performance
on the supported task and the patching task. We refer to this measure as accuracy distance to optimal.
Formally, accuracy distance to optimal is given by

1

2
(max

α
Acc(θα,Dsupp) + max

α
Acc(θα,Dpatch))−

1

2
max
α

(Acc(θα,Dsupp) + Acc(θα,Dpatch)), (1)

where Acc(θ,D) represents the accuracy of model θ on task D. In Figure 3 (left), we show that
accuracy distance to optimal decreases with scale, indicating that patching becomes more effective
for larger models.

Model similarity. Fine-tuning modifies overparameterized models less [9], which provides insights
on why larger models are easier to patch: less movement is required to fit new data. We demonstrate
this by evaluating representational similarity using Centered Kernel Alignment (CKA) [32] (see
Appendix D for details). As shown in Figure 3 (center), the representations of the unpatched and
fine-tuned models become more similar as models grow larger, indicated by larger CKA values.
Moreover, Figure 3 (right) shows that the cosine similarity between the weights of the unpatched and
fine-tuned models, cos(θzs, θft) = ⟨θzs, θft⟩/(||θzs|| ||θft||), increases with scale.

4.2 Baselines and ablations
Baselines. There are many alternatives which enable a trade-off between accuracy on the supported
and patching tasks. These methods include early stopping during fine-tuning, applying a regularization
term which penalizes movement from initialization, or training with different hyperparameters
including a smaller learning rate. Unlike interpolation, these methods do not enable navigating the
accuracy trade-off without fine-tuning the model again many times. Moreover, Figure 4 demonstrates
that the accuracy trade-off frontier for early stopping, regularization, or varying hyperparameters can
be recovered by interpolating weights with different mixing coefficients. Additional baselines and
discussion is provided in Appendix E.

Additional supported tasks. In Figure 2, we use ImageNet as a representative supported task. This
section demonstrates that our procedure is stable under different choices of the supported task. Instead
of ImageNet, we use CIFAR10, CIFAR100, Food101 and STL10. Figure 5 displays representative
results, where performance is averaged over the nine patching tasks from Figure 2 (see Appendix F
for additional results). We observe consistent results across supported tasks, and that the optimal
mixing coefficients are stable across different choices of supported tasks (Figure 5, right).
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Figure 5: Results are consistent across supported tasks. For multiple supported tasks, we observe
similar accuracy improvements on patching tasks, without substantially decreasing supported task
accuracy. Additional results for the supported tasks Food101, STL10 and ImageNet are in Appendix
F. Moreover, choosing the mixing coefficients using a different supported task does not substantially
decrease combined accuracy on patching and supported tasks (right).

Additional models. In addition to the CLIP ViTs used in the majority of our experiments, we study
the CLIP ResNet models [23]. Results are shown in Appendix G. We find that patching is less
effective for ResNets compared to ViTs of similar size, which corroborates the findings of Ramasesh
et al. [54] that ResNets are generally more susceptible to catastrophic forgetting. However, similarly
to ViTs, we still observe improvements with scale.

5 Patching models on multiple tasks

This section details experimental results for patching on multiple datasets. Recall from Section 2
that there are many strategies for extending our patching procedure to multiple datasets, which we
briefly revisit. For joint patching we merge all the datasets into a single fine-tuning task and apply
our patching procedure as normal. For sequential patching we iteratively perform our procedure
once per task, using the patched model at each step as the initialization for the next step.3 We also
explore parallel patching, for which we have an unpatched model θzs and independently fine-tune
on each of the tasks in parallel. We then search for mixing coefficients to combine the resulting
models. For tasks 1, ..., k, let θ(1)ft , ..., θ

(k)
ft denote the fine-tuned models for each task. Since it is

impractical to exhaustively search over each αi, we instead search over a one-dimensional scalar
α ∈ [0, 1], which interpolates between θzs and the average of all fine-tuned solutions 1

k

∑k
i=1 θ

(i)
ft . 4

Further experimental details are provided in Appendix I.

3The results are averaged over three random seeds that control the order in which tasks are seen.
4We also explored adaptive black-box optimization algorithms to choose the mixing coefficients αi [55], but

observed little improvement (0.3 to 0.4 percentage points on average).
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Figure 6: Contrasting various strategies for patching on multiple tasks. On all experiments,
ImageNet is used as the supported task while the other nine datasets are used for patching. When
data from all patching tasks is available, joint patching yields a single model that is competitive with
using ten different specialized models. Weight interpolations greatly mitigate catastrophic forgetting
on the sequential case, but do not completely eradicate it. Finally, parallel patching underperforms
other patching strategies, but still provides improvements over the unpatched model.

These methods have various trade-offs and may be applicable for different scenarios. Joint patching
is only possible when data from all tasks you wish to patch is available. On the other hand, sequential
patching is appropriate when the tasks are observed one after another. Finally, parallel patching can
leverage distributed hardware.

Figure 6 displays experimental results when patching on all nine tasks from Section 4. We observe
that joint patching is the best-performing method on average. This is perhaps unsurprising since joint
patching has simultaneous access to all patching datasets, unlike other patching strategies. For ViT-
L/14, joint patching achieves a combined accuracy of 83.8%, a 15.8 percentage points improvement
over the unpatched model, and only 0.5 percentage points lower than using multiple specialized
models.5 Moreover, patching a ViT-B/32 model with the joint strategy achieves a combined accuracy
6.1 percentage points higher than a ViT-L/14 unpatched model, which requires 12x more GMACs.

The accuracy of sequential patching approaches that of joint patching, especially for larger models.
Note that, unlike in joint patching, forgetting can compound since the patching procedure is applied
multiple times in sequence. In sequential patching, weight interpolations do not completely eradicate
forgetting, but greatly mitigate it. This is most noticeable for smaller models: sequentially fine-tuning
a ViT-B/32 without interpolation reduces the combined accuracy by 4.6 percentage points compared
to the unpatched model, as shown in Appendix I. This is compared to a combined accuracy increase
of 11 percentage points when using sequential patching. Additional results, including experiments on
SplitCIFAR [56], can be found in Appendix I.

Finally, parallel patching underperforms other patching strategies. Like sequential patching, parallel
patching is in the challenging setting where data from all patching tasks is not available simultaneously.
Moreover, unlike in joint or sequential patching, no model is optimized on data from all patching
tasks. Using a black box optimization algorithm for finding the mixing coefficients did not yield large
improvements over using the same mixing coefficient for all models. However, it is possible that
more sophisticated search methods could yield better results. In Appendix I, we present additional
experiments for a subset of the tasks where exhaustively searching the space of mixing coefficients is
tractable, finding headroom for improvement in most cases.

5Recall from Section 3 that combined accuracy considers both patching and supported tasks with equal
weight.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN

Unpatched accuracy 86.2 64.9 79.9 51.7 43.4 82.6 73.4 76.9 72.8

Patched accuracy 87.0 66.1 87.2 71.1 60.4 91.3 74.2 79.3 88.9
(+0.8) (+1.2) (+7.3) (+19.4) (+17.0) (+8.7) (+0.8) (+2.4) (+16.1)

Table 1: Patching can generalize to unseen classes. We randomly partition each dataset into tasks
A and B with disjoint class spaces of roughly equal size. This table reports how patching on task A
effects accuracy on task B for the ViT-L/14 model. In all cases, accuracy on task B improves when
patching on task A even though the classes are unseen during patching.

Task A MNIST SVHN EuroSAT RESISC45 MNIST FashionMNIST GTSRB MTSD
Task B SVHN MNIST RESISC45 EuroSAT FashionMNIST MNIST MTSD GTSRB

Unpatched accuracy 58.6 76.4 71.0 60.2 67.7 76.4 19.3 50.6

Patched accuracy 68.9 93.2 69.7 70.4 70.8 77.5 30.8 69.8
(+10.3) (+16.8) (-1.3) (+10.2) (+3.1) (+1.1) (+11.5) (+19.2)

Table 2: Patching on task A can improve accuracy on a related task B. For a pair of tasks A and
B, we report accuracy of the ViT-L/14 on task B, after patching on task A, finding improvements on
seven out of eight cases.

6 Broad transfer
An alternative to our patching approach is to introduce parameters which are specific to each new
task. By contrast, the method we explore always maintains a single model. This section describes
an additional advantage of the single model approach: patching the model on task A can improve
accuracy on task B, even when task A and B do not share the same classes. We refer to this
phenomenon as broad transfer. Note that we are able to study this phenomenon because the model
remains open-vocabulary throughout our patching procedure.

This section explores two experiments to measure the effects on task B when patching the model on
task A. First, we explore broad transfer by randomly partitioning datasets into disjoint sets with no
class overlap. For a dataset D we partition the class space Y into two disjoint sets of roughly equal
size YA and YB . We build task A with the examples (x, y) ∈ D where y belongs to YA, and task B
with examples (x, y) where y belongs to YB . Table 1 shows how patching a model on task A affects
the accuracy on task B for nine datasets D. The accuracy improvements on task B range from 0.8 to
19.4 percentage points, even though the classes from task B are not seen during patching.

To further understand transfer, we consider additional task pairs A and B, which are now different
datasets. While some pairs A, B share classes, there are still instances of broad transfer. Concretely,
Table 2 examines i) MNIST and SVHN, two digit recognition tasks with shared classes; ii) EuroSAT
and RESISC45, two satellite imagery recognition tasks where there are unshared classes but some
overlap; iii) GTSRB and MTSD [17], two traffic sign recognition datasets where there are unshared
classes but some overlap; and iv) MNIST and FashionMNIST [77], which do not share any classes
but appear visually similar. In seven out of eight experiments, patching on task A improves accuracy
by 1.1 to 19.2 percentage points on task B. The exception is when A is EuroSAT and B is RESISC45,
where accuracy decreases by 1.3 percentage points.

In all experiments, when patching on task A we choose the mixing coefficient α by optimizing the
held-out validation accuracy on task A and a supported task (in this experiment we use ImageNet).
While it is possible for a method that introduces new parameters for each task to exhibit broad transfer
to new data, this also requires knowing which parameters to apply for the new data. This is not
necessary in the single model approach.

7 Case studies
We further examine the performance of model patching in three additional settings, which highlight
weaknesses of the zero-shot CLIP model and showcase broad transfer (Section 6). We patch models
so that they are i) less susceptible to typographic attacks (Section 7.1), ii) better at counting objects
(Section 7.2), and iii) better at answering questions about images (Section 7.3).
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Figure 7: Guarding against real-world typographic attacks by patching on synthetic data. (a) A
sample from our real-world typographic attacks test set. A CLIP ViT-L/14 is “tricked” into classifying
this image as a dog instead of a cat. (b) Sample of synthetic typographic attack data. (c) Performance
on real-world data with unseen classes after patching on only synthetic typographic attacks (curves
produced by interpolating between the unpatched and fine-tuned model). (d) Analogous curves for
the test set of the synthetic data used for patching.

7.1 Typographic attacks

Goh et al. [22] find that CLIP models are susceptible to typographic attacks, where text superimposed
on an image leads to misclassification. For example, in Figure 7 (a), the text on the pink note saying
“dog” leads a CLIP to misclassify the image of a cat as a dog. To fix this vulnerability, we procedurally
generate typographic attack data by adding text with incorrect class names to SUN397 [78], as seen
in Figure 7 (b). We then collect a test set of 110 real world images by placing notes on objects and
taking photos.6 After applying the patching procedure (Section 2) on the synthetic data, we evaluate
on the real-world images (Figure 7 (c)) and synthetic test set (Figure 7 (d)). We observe that while
larger models are more susceptible to typographic attacks, they are also more amenable to patching.
Furthermore, we see an example of broad transfer between the synthetic and real-world data: when
patching ViT-L/14 on synthetic data, its accuracy on real-world typographic attacks improves 41
percentage points even though the real-world classes are unseen. The cost is a reduction of less than
1 percentage point on ImageNet. We present details on the task and data collection in Appendix J.

7.2 Counting

Radford et al. [52] find that CLIP models struggle to count the number of objects in CLEVR [30].
Here, the task is to choose an integer between 3 and 10 for each image, corresponding to the number
of visible objects. While a straightforward way to patch such a task is to fine-tune on it directly,
we investigate if patching on a subset of the classes allows the patched model to generalize to
other numbers. Specifically, we patch on images with 4, 5, 6, 8, or 9 objects. To evaluate broad
transfer, we test on images with 3, 7, and 10 objects (7 for understanding interpolation and 3 and
10 for extrapolation). We find that patching improves accuracy from 59% to over 99% on unseen
classes with less than half a percentage point decrease in ImageNet accuracy. For more details see
Appendix K.

7.3 Visual question answering

As shown by Shen et al. [63], zero-shot CLIP models perform poorly on visual question answering [4].
Using CLIP for VQA typically involves additional parameters—for instance, Shen et al. [63] trains
a transformer [72] on CLIP features. In contrast, our procedure for patching CLIP on VQA does
not introduce new parameters. Following Shen et al. [63], we contrast images with a series of text
prompts, where each prompt corresponds to an option in multiple-choice VQA, formed by both the
question and a candidate answer using the following template: “Question: [question text] Answer:
[answer text]”. We evaluate on multiple-choice VQA v1 [4], where each question is associated with
18 candidate answers. Our results, further detailed in Appendix L, show that patching is effective for
visual question answering: patching ViT-L/14 improves its accuracy by 18 percentage points, while
accuracy drops by less than one percentage point on ImageNet.

6Data available at https://github.com/mlfoundations/patching.
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8 Related work
Continual learning and catastrophic forgetting. Learning tasks sequentially remains a challenge
for neural networks. When a neural network learns a new task, the accuracy on other tasks often
decreases, a phenomenon known as catastrophic forgetting [43, 71, 19, 31]. While forgetting in
neural networks may actually aide learning [84], various approaches for alleviating catastrophic
forgetting have been proposed which include: i) regularization based approaches such as EWC [31]
and SI [81] which penalize the movement of parameters, ii) replay methods [56, 64, 38, 6, 59, 45],
which incorporate data or gradient information from previous tasks when learning a new task, and
iii) introducing task-specific parameters [60, 79, 41, 8, 73, 74]. In contrast to all these methods, our
patching method requires no modification to fine-tuning. Moreover, in contrast to regularization or
replay based methods, patching requires no extra computational cost during training and in contrast
to methods with task specific parameters, we maintain a single model. Having a single model is
beneficial when there is new data which is similar to one of the tasks which have already been patched.
Even without explicitly knowing which task the new data is similar to, we can observe accuracy
improvements, as we discuss in Section 6.

Most similar to our work is Mirzadeh et al. [45], who observe high accuracy on task A on the linear
path between a model which achieves high accuracy on task A and a model which is fine-tuned jointly
on task A and B. Moreover, they observe high accuracy on task B on the linear path between a model
fine-tuned on task B, and the jointly fine-tuned model. Therefore, there exists a path between a model
which achieves good performance on task A and a model fine-tuned on task B along which a model
can achieve high accuracy on both tasks. However, in Mirzadeh et al. [45] this combined path can
be non-linear, leading them to propose a regularization and replay based method for achieving high
accuracy on both tasks. In our work, we find that examining models on a linear path between the
unpatched model (which has high accuracy on task A) and the model fine-tuned on task B is often
sufficient for obtaining a model which achieves high accuracy on both tasks (Figure 1). We speculate
that this is due to scale and model architecture: in contrast to Mirzadeh et al. [45], we initialize with
a model pre-trained on a large, heterogeneous dataset consisting of 400 million images [52], and
primarily use vision transformers [15]. As shown in Section 4.2, our method performs substantially
worse with ResNets [23], which are used by Mirzadeh et al. [45]. Finally, that catastrophic forgetting
is less of a concern for models that are large and pre-trained has been observed by Ramasesh et al.
[54], Mehta et al. [44]. Ramasesh et al. [54] also observe that vision transformers are less susceptible
to forgetting than ResNets with the same number of parameters.

Linear mode connectivity and robust fine-tuning. Linearly interpolating neural network weights
is a key step in our patching procedure. Because of nonlinear activations, it can be surprising that
linearly interpolating between two sets of weights can result in a high accuracy solution. However, a
researchers have observed that interpolating neural network weights can achieve high accuracy when
training on MNIST from a common initialization [47] or when part of the optimization trajectory
is shared [18, 26, 49, 76, 42, 16, 75, 10]. The term linear mode connectivity was coined by Frankle
et al. [18]: two networks exhibit linearly mode connectivity if the accuracy does not decrease when
using weights on the linear path between them [47, 18]. While Nagarajan and Kolter [47] and Frankle
et al. [18] focused on accuracy on a single task, Wortsman et al. [76] use linear mode connectivity to
fine-tune models while preserving their robustness to natural distribution shifts. By interpolating the
weights of a zero-shot and fine-tuned model, they find a solution which performs well both on the
fine-tuning task and under distribution shift. In contrast to Wortsman et al. [76], we do not modify
any task-specific parameters when fine-tuning, preserving the open-vocabulary nature of the models
we patch. Unlike Wortsman et al. [76], we examine accuracy trade-offs across different tasks with
potentially no class overlap. Moreover, we adapt a model to multiple tasks. Finally, closely related to
our work is that of Matena and Raffel [42], who use Fisher-weighted averaging of language models
before and after fine-tuning on downstream tasks. Unlike Fisher-weighted averaging of Matena and
Raffel [42], we do not use different mixing coefficients for each parameter, and thus require no extra
compute when patching. Moreover, we explore new strategies for patching on multiple tasks, as
detailed in Section 5, and focus our explorations on open-vocabulary image classifiers.

Model interventions. Several authors have studied the problem of updating a model to locally alter
its behavior without external disruptions [65, 13, 46, 61, 58, 57]. Previous literature uses various
terms to refer to this process, including model editing, patching or debugging. A popular use case is
to update trained language models to reflect changes in the world (for instance, facts like who is the
current president of Brazil) [27, 40, 36, 28]. Additionally, inspired by software engineering practice,
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previous work explored “debugging” language models through user interaction [58, 57], including
providing corrective feedback to the models via natural language [3]. Mitchell et al. [46], De Cao
et al. [13] propose training auxiliary networks to perform local edits on pre-trained models. Santurkar
et al. [61] introduce a method for rewriting the prediction rules of a classifier, focusing on specific
failure modes such as reliance on spurious correlations. In contrast with previous literature, our work
explores patching models at the task level, aiming to systemically improve accuracy on a dataset—for
instance, enabling a model to recognize dozens of satellite imagery classes.

9 Limitations and conclusion
Limitations. Accuracy on supported tasks can still decrease, especially for smaller models. This
limitation is perhaps best reflected on sequential patching: patched models underperform using
multiple specialized models when many tasks are added sequentially. Using larger models and weight
interpolations alleviate this issue, but do not completely eradicate it. Finally, our method provides
no guarantees on which data the model performance might change. Better understanding on which
datasets patching is more effective is an exciting direction for future research.

Conclusion. In this work, we explore several techniques for patching open-vocabulary models, with
the goal of improving accuracy on new tasks without decreasing accuracy on previously supported
tasks. We show that patching with weight interpolation is effective in several scenarios, ranging from
classifying digits to defending against typographic attacks. Patching becomes more effective with
scale, and can be applied on multiple tasks sequentially or simultaneously. Our findings demonstrate
that in many circumstances it is possible to expand the set of tasks on which models achieve high
accuracy, without introducing new parameters, without re-training them from scratch, and without
catastrophic forgetting.
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Size of the set used for
Dataset Training Validation Testing Number of classes

Cars [33] 7,330 814 8041 196
DTD [11] 3,384 376 1,880 47
EuroSAT [24] 21,600 2,700 2,700 10
GTSRB [66] 23,976 2,664 12,630 43
KITTI [21] 6,347 423 711 4
MNIST [37] 55,000 5,000 10,000 10
RESISC45 [7] 17,010 1,890 6,300 45
SUN397 [78] 17,865 1,985 19,850 397
SVHN [48] 68,257 5,000 26,032 10
FashionMNIST [77] 55,000 5,000 10,000 10
MTSD [17] 55,078 5,000 8,737 235

CIFAR10 [34] 45,000 5,000 10,000 10
CIFAR100 [34] 45,000 5,000 10,000 100
Food101 [5] 70,750 5,000 25,250 101
STL10 [12] 4,500 500 8,000 10
ImageNet [14] 1,255,167 26,000 50,000 1,000

Table 3: Dataset statistics for patching and supported tasks. When a set for validation is not available
we use held-out data from the official training set for validation purposes. In cases like ImageNet we
use the official validation set for testing.

A Dataset details

In Table 3, we present the number of classes and the size of the training, validation and test sets we
use for the each patching and supported tasks: Stanford Cars [33], Describable Textures (DTD) [11],
EuroSAT [24], German Traffic Sign Recognition Benchmark (GTSRB) [66], KITTI distance [21],
MNIST [37], RESISC45 [7], SUN397 [78], SVHN [48] ImageNet [14], FashionMNIST [77], MTSD
[17], CIFAR10 [34], CIFAR100 [34], Food101 [5], STL10 [12] and ImageNet [14]. For datasets that
did not have publicly available, labeled test sets, we use the validation set as the test set, and split
the training set into training and validation sets in a stratified fashion. For all these datasets, we use
accuracy as our evaluation metric.

B Background on open-vocabulary models

In contrast to typical image classifiers, open-vocabulary models are not constrained to a fixed
classification space. Instead, they are able to perform any image classification task, by using textual
descriptions of the class names. Recently, many open-vocabulary models have been proposed
[52, 29, 51, 82, 80, 1].

A popular class of open-vocabulary models are contrastive image-text models like CLIP, BASIC and
ALIGN. Following Radford et al. [52] we use the term CLIP to refer to any contrastive image-text
model. This class of models are the focus of this work, although all of our methods can naturally be
extended to other open vocabulary models like Flamingo [1]. CLIP models are trained to contrast
images and textual descriptions, and are usually pre-trained on large, heterogeneous data collected
from the web, ranging from hundreds of millions to billions of pairs of images and captions. This
class of models consists of a vision encoder f which processes images and a text encoder g which
processes text. Given a set of image-caption pairs {(x1, y1), ..., (xk, yk)}, the model is optimized to
maximize the similarity of aligned pairs ⟨f(xi), g(yi)⟩ relative to unaligned pairs.

When performing a classification task, a set of captions {y1, ..., yk} are procedurally generated based
on text descriptions of the classes and some template. For instance, for distinguishing between cats
and dogs, the set of candidate captions could be {“an image of a dog”, “an image of a cat”}. Then,
given an image x, the chosen class is selected based on the caption that maximizes feature similarity
with the image (argmaxi⟨f(x), g(yi)⟩). A common practice is to generate multiple candidate
captions for each class (for instance, “an image of a dog” and “a photo of a dog”) and average their
representations before computing the similarities. This practice, introduced by Radford et al. [52], is
known as prompt ensembling.
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Figure 8: Freezing the classification layer output by CLIP’s text encoder has minimal effect
on downstream accuracy. Each experiment is repeated for three random seeds, shown as different
points.

Adapting open-vocabulary models to downstream tasks is typically done by introducing task-specific
parameters, mapping visual representations to a fixed class space determined by the downstream task.
The model can then be fine-tuned end-to-end, where both the visual encoder and the new classification
head are updated, or adapted via training linear probe on top of the visual representations. By contrast,
we do not introduce or modify any task-specific parameters. To do so, we adapt only the weights of the
visual encoder, maintaining the text encoder without updating its weights. Freezing the text encoder
allows for faster fine-tuning, since the text features can be pre-computed once per task. Moreover,
in Appendix C, we show that the decision of freezing the text encoder does not substantially harm
performance. Importantly, this fine-tuning procedure allows us to adapt the model without loosing its
ability to perform any image classification task.

C Frozen CLIP heads for fine-tuning

Instead of introducing a learnable classification layer, we use the frozen output of CLIP’s text encoder
to map image features to the space of classes. Figure 8 shows that this modification has a negligible
effect on downstream accuracy for MNIST, EuroSAT, and SUN397.

D The effect of scale on patching

This section introduces additional metrics for the effectiveness of patching and how similar the
unpatched and fine-tuned models are. Results are shown in Figure 9.

D.1 Measuring the effectiveness of patching
In addition to accuracy distance to optimal presented in Section 4.1, we present two other metrics
to measure the effectiveness of patching, accuracy distance to endpoints and path correction cost,
which are summarized in Table 4. For simplicity, let xα denote the accuracy of model θα on the
supported task and yα on the patching task. For all metrics, lower values indicate that patching is
more effective.

Accuracy distance to endpoints contrasts the accuracy of a single model with using two specialized
models, the fine-tuned model for the patching task and the unpatched model for the supported task.
Recall that xα denotes the accuracy of model θα on the supported task and yα on the patching task.
Accuracy distance to endpoints is given by (x0 + y1)/2−maxα(xα + yα)/2.

Path correction cost measures how the curve traced by varying the mixing coefficient compares
to a curve without accuracy trade-offs. Its value is the average cost needed to move points in the
traced curve to the ideal curve I, where I = {x, y ∈ [0, 1] × [0, 1] | x = xzs ∨ y = yft} is the
set of points on the scatter plots where either accuracy on the supported task is equal to that of
the unpatched model or accuracy on the patching task is equal to that of the fine-tuned model.
More precisely, patch correction cost is given by, Eα[δ ((xα, yα), I)1[xα<x0 ∧ yα<y1]], where
δ((x, y), I) = minx′,y′∈I ||(x − x′, y − y′)||2 is the distance between (x, y) and I, and 1[ ] is the
indicator function. The indicator term 1[ ] ensures costs are only computed for points where both
accuracy on the supported task is smaller than that of the unpatched model and accuracy on the
patching task is smaller than that of the fine-tuned model.
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Figure 9: The effect of scale on model patching. (a-c) Patching is more effective for larger models.
(d, e) Unpatched and fine-tuned models have more similar weights at scale. (f) For larger models, the
unpatched and fine-tuned model are more similar with respect to their representations.

Acc. distance to endpoints Acc. distance to optimal Path correction cost
x0+y1

2
−maxα

(
xα+yα

2

)
maxα xα+maxα yα

2
−maxα

(
xα+yα

2

)
Eα[δ ((xα, yα), I)1[xα<x0 ∧ yα<y1]]

Table 4: Measures of patching effectiveness. For all metrics, lower values indicate that patching is
more effective. xα denotes the accuracy of model θα on the supported task and yα on the patching
task.

D.2 Model similarity
In addition to the angle between the unpatched and fine-tuned models, we also measure the average
absolute difference ||θft − θzs||1/n between the weights θzs, θft ∈ Rn.

Representational similarity is measured through CKA [32], which is shown in Equation 2. In short,
CKA can be used to compare the similarity between two models by inspecting their representations
on a given set of inputs. Formally, let Θzs,Θft ∈ Rn×d denote the d-dimensional features of the
unpatched and fine-tuned model on a dataset with n samples, pre-processed to center the columns.
CKA is then given by:

CKA =
||Θ⊤

ft Θzs||2F
||Θ⊤

zsΘzs||F ||Θ⊤
ft Θft||F

, (2)

where ||A||F indicates the Frobenious norm of a matrix A. Larger values of CKA indicate more
similar representations. When reporting CKA values, we compute the last layer features using
samples from the supported task.

E Additional baselines and comparisons
This section details additional baselines for our patching procedure in the context of patching a
single task. We discuss exponential moving averages (Section E.1), elastic weight consolidation
(Section E.2), and finally mixing the pre-training and fine-tuning objective (Section E.3).

E.1 Exponential moving averages (EMA)
In Figure 4 we show that interpolating the weights of the unpatched and fine-tuned model can
recover the “forgetting frontier” [54]. The forgetting frontier is formed by fine-tuning with various
hyperparameters. In particular, we show that interpolating the unpatched and fine-tuned models can
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Figure 10: Comparisons with EMA. When fine-tuning with a constant learning rate and using
EMA [69], interpolating the unpatched and fine-tuned model recovers a similar accuracy trade-off as
terminating training early.
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Figure 11: Comparisons with EWC and regularization towards initialization. When data is
available from the pre-training set it is possible to augment standard fine-tuning with EWC [31].
EWC provides a solution with a good accuracy trade-off when patching on MNIST and EuroSAT, but
not SUN397. We also show interpolations between the weights of the unpatched model and a model
fine-tuned with EWC. As pre-training data is required to compute the fisher information matrix for
EWC, these experiments use a ViT-B/16 model from a CLIP reproduction OpenCLIP [25] pre-trained
on LAION 400M [62].

recover a solution with similar or better accuracies than early termination. However, these early
termination solutions can potentially be suboptimal because learning rate has not yet decayed to zero.
As such, we recreate this comparison in Figure 10 where we fine-tune with a constant learning rate
and EMA [69].

E.2 Elastic weight consolidation (EWC)

Elastic weight consolidation [31] (EWC) is a method which penalizes the movement of parameters
which are deemed important for solving previous tasks. However, access to the pre-training data is
required to investigate which parameters are important. Therefore, we could not use this method for
Figure 4 since the pre-training data for the CLIP models of Radford et al. [52] is private. To examine
the performance of EWC, we use a reproduction of CLIP from the OpenCLIP repository [25],
which is pre-trained on the open source LAION 400M dataset [62]. We use 2,000 iterations of
pre-training to compute the fisher information matrix required for EWC. The results are illustrated
in Figure 11 which show EWC solutions corresponding to different coefficients from the EWC
loss ({0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000}). We also interpolate the weights
of the unpatched model and the EWC solution fine-tuned with coefficient 1000000. On MNIST
and EuroSAT, an EWC solution exhibits slightly better accuracy trade-offs than any solution on
the interpolation between the unpatched model and model fine-tuned without EWC. However, on
SUN397, interpolating the unpatched and fine-tuned model provides a better trade-off than EWC.
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Figure 12: Comparisons with objective mixing. Objective mixing mixes together the pre-training
objective and fine-tuning objective. Since the pre-training objective requires access to pre-training
data, we experiment with a ViT-B/32 model which is pre-trained on LAION 400M [62] from the
CLIP reproduction OpenCLIP [25] (left) and a ViT-B/32 model pre-trained by us with a small batch
(512) on YFCC-15m Thomee et al. [70], Radford et al. [52]. The left plot shows that objective mixing
is difficult because it requires a large batch size. Pre-training on LAION 400M uses batch size 32k,
and zero-shot accuracy drops when we continue pre-training with a smaller batch size. In this setting,
the patching procedure we propose (denoted by “interpolating weights”) offers the better accuracy
trade-off. The right plot shows that, while objective mixing can be successfully applied to models
pre-trained with small batch sizes, these models perform worse overall. Details are in Section E.3.

E.3 Objective mixing

When data is available from the pre-training dataset it becomes possible mix the pre-training and
fine-tuning objectives. This baseline, which we refer to as objective mixing, is similar to replay
methods in continual learning [56, 64, 38, 6, 59, 45]. However, objective mixing is only possible
when the pre-training data is available, which is not the case for the official CLIP models of Radford
et al. [52]. Therefore, we use models from a CLIP reproduction, OpenCLIP [25].

First, we use an OpenCLIP ViT-B/32 model which is trained on the publicly available LAION
400M dataset [62] and showcase results in Figure 12 (left). Like CLIP models from Radford et al.
[52], this model is trained with a batch size of approximately 32,000. We use a single machine
and try batch sizes 128, 256, 512, and 1024 for the pre-training objective. Overall the loss is given
by (1− β) · ℓpre-training + β · ℓfine-tuning for β ∈ {0, 0.001, 0.01, 0.1, 0.2, ..., 0.9, 1.0} where ℓpre-training
and ℓfine-tuning are the pre-training and fine-tuning loss, respectively. We notice and interesting
phenomenon: even when β = 0, the zero-shot accuracy on ImageNet still drops from the pre-trained
model (Figure 12). We hypothesize that the drop in zero-shot accuracy is likely due to a reduction
in batch size and note that the importance of large batches for CLIP objectives has been studied
by Pham et al. [51], Radford et al. [52]. Because of this drop in accuracy, the patching procedure we
study matches or provides better accuracy trade-offs in this setting.

Next, we pre-train our own ViT-B/32 model on a single machine using OpenCLIP [25]. using
a batch size of 512 for the pre-training objective. We also use the smaller pre-training dataset
YFCC-15m [70, 52]. In Figure 12 (right) we perform objective mixing with coefficients β ∈
{0, 0.001, 0.01, 0.1, 0.2, ..., 0.9, 1.0} and batch size 512 for the pre-training objective. In this setting,
zero-shot accuracy does not drop for β = 0 and objective mixing performs better than the patching
procedure we propose. We believe this is because scale helps our method (see Section 4.1), and this is
the smallest scale model we examine in terms of pre-training set size. In terms of absolute accuracy,
applying our patching procedure to the LAION pre-trained ViT-B/32 model is the best option.

In conclusion, the findings of these experiments are that:

1. Objective mixing is difficult because it requires a large batch size.

2. Objective mixing with a small batch size performs well when applied to CLIP models trained
with small batch sizes, but these models are worse overall.
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Figure 13: Average patching results for various supported tasks For multiple supported tasks, we
observe similar accuracy improvements on patching tasks, without substantially decreasing supported
task accuracy.

F Additional supported tasks
In addition to CIFAR10 and CIFAR100, Figure 13 shows how the choice of supported tasks affects
patching. Breakdowns for each patching task are shown in Figures 14 to 17.
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Figure 14: Patching results for CIFAR10 as the supported task. Results are shown for nine
patching tasks.
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Figure 15: Patching results for CIFAR100 as the supported task. Results are shown for nine
patching tasks.
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Figure 16: Patching results for Food101 as the supported task. Results are shown for nine patching
tasks.
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Figure 17: Patching results for STL10 as the supported task. Results are shown for nine patching
tasks.
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G Additional models
In Figure 18, we measure the effectiveness of patching for four ResNet models [23]. Specifically, we
examine ResNet-50, ResNet-101, and two wider networks, ResNet-50x4, ResNet-50x16 [23, 52].

H Broad Transfer
This section provides additional results for the broad transfer experiments in Section 6, as well as
new experiments where we fine-tune on ImageNet.

In Section 6, Tables 1 and 2 only show results for the single mixing coefficient that our patching
procedure chooses. To supplement these tables, we show how accuracy changes for various mixing
coefficients α ∈ {0, 0.05, 0.1, ..., 1}. For Table 1 the corresponding figure with all mixing coefficient
information is Figure 19. Similarly, Table 2 is expanded in Figures 20 and 21.

Finally, we measure broad transfer on 13 datasets when patching on ImageNet. In Figure 22 we
fine-tune on ImageNet then interpolate with the unpatched model. Surprisingly, for the ViT-B/16
model, fine-tuning on ImageNet improves accuracy on KITTI accuracy by more than 10 percentage
points, and MNIST accuracy by more than 20 percentage points, even without patching. More
investigation into broad transfer is required to understand when and how it applies.
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Figure 18: The effect of model scale in patching ResNets. Compared to Vision Transformers (ViTs),
patching is less effective for ResNets, corroborating findings of Ramasesh et al. [54]. Similarly to
ViTs, patching is more effective for larger models.
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Figure 19: The effect of patching on unseen classes. We randomly partition each dataset into tasks
A and B with disjoint class spaces of roughly equal size. In this Figure we fine-tune on task A then
interpolate the fine-tuned model with the unpatched model. We measure accuracy on task A (y-axis)
and task B (x-axis). This Figure supplements Table 1.
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Figure 20: The effect of patching on related tasks. In this figure we fine-tune on task A then
interpolate the weights of the fine-tuned and unpatched model. In addition to measuring accuracy of
task A and a supported task ImageNet, we also measure accuracy on a different task B. This figure
along with Figure 21 supplement Table 2.
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Figure 21: The effect of patching on related tasks. In this figure we fine-tune on task A then
interpolate the weights of the fine-tuned and unpatched model. In addition to measuring accuracy of
task A and a supported task ImageNet, we also measure accuracy on a different task B. This figure
along with Figure 20 supplements Table 2.
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Figure 22: Measuring broad transfer to 13 image classification datasets when fine-tuning on
ImageNet. We fine-tune on ImageNet then interpolate with the unpatched model with mixing
coefficients α ∈ {0, 0.05, ..., 1.0}. In addition to measuring ImageNet accuracy, we also measure
open-vocabulary accuracy on 13 tasks.
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I Patching models on multiple tasks

This section expands the experiments and results on patching models on multiple tasks from Section
5. Figure 23 illustrates the different patching strategies.

We first show an exhaustive search over the mixing coefficients for parallel patching on pairs of
datasets. Next, we provide additional results for sequential patching, including additional orders in
which the datasets are seen and how the number of datasets affects the quality of patching. Finally,
we present results on SplitCIFAR [56].

I.1 Exhaustive parallel search

Recall from Section 5 that exhaustively searching the mixing coefficients is prohibitively expensive
when many patching tasks are used. Here, we study patching on two patching tasks, for which an
exhaustive search is still feasible, and contrast it with other search strategies. More specifically, we
examine three pairs of datasets: i) MNIST and EuroSAT; ii) MNIST and DTD; and iii) Cars and DTD.
The results are shown in Figures 24 to 26. For two patching tasks D1 and D2, let θ(1)ft and θ

(2)
ft be the

models fine-tuned on them. We then measure accuracy of models θ = (1 − α1 − α2) · θzs + α1 ·
θ
(1)
ft + α2 · θ(2)ft for α1, α2 ∈ [0, 1]. In most cases, there exists some values of the mixing coefficients

such that accuracy is high on all the three tasks. For instance, when patching a ViT-L/14 on MNIST
and EuroSAT, when α1 = 0.35 and α2 = 0.45, accuracy on MNIST and EuroSAT is 39 and 23
percentage points higher compared to the unpatched model, while accuracy on ImageNet decreases
by less than 1 percentage point. Note that the area of high average accuracy typically increases with
scale, supporting findings of Section 4.1.

In Table 5 we contrast the average accuracy obtained via exhaustive search with using other search
strategies, uniform search and black-box optimization. Recall that these methods optimize for average
accuracy on the validation sets. The uniform search strategy, also described in Section 5, consists of
searching over a single scalar β ∈ [0, 1], inspecting the models θ = (1−β)·θzs+α/2·θ(1)ft +α/2·θ(2)ft .
For black-box optimization, we explore an adaptive black box optimization algorithm, Nevergrad
[55]7 over coefficients α(1), α(2) ∈ [0, 1] for the model θ = (1−α1−α2)·θzs+α1 ·θ(1)ft +α2 ·θ(2)ft . We
initialize all α(1) and α(2) with 1/2, and run for 50 optimization steps. As shown in Table 5, uniform
search and black-box optimization are comparable in performance, and substantially outperform the
unpatched model. However, both strategies still lag behind exhaustive search, indicating headroom
for more sophisticated search strategies.

7https://facebookresearch.github.io/nevergrad/

Figure 23: An illustration of different patching strategies. The area proportions on the circles that
represent patched models are merely illustrative. In practice, the mixing coefficients are determined
based on held-out validation sets. These diagrams are inspired by Matena and Raffel [42].
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Figure 24: Exhaustive search for parallel patching on MNIST and EuroSAT.
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Figure 25: Exhaustive search for parallel patching on MNIST and DTD.

MNIST/EuroSAT MNIST/DTD Cars /DTD
ZS U BB E ZS U BB E ZS U BB E

ViT-B/32 52.5 78.1 78.1 84.3 51.9 70.7 72.0 76.8 55.7 65.6 65.7 68.3
ViT-B/16 57.8 81.8 81.9 87.3 54.9 75.1 76.5 80.8 59.3 72.0 71.9 74.7
ViT-L/14 70.7 86.9 87.0 90.9 69.1 81.8 82.6 85.6 69.6 79.6 79.8 82.3

Table 5: Contrasting multiple search strategies for parallel patching. ZS: zero-shot; U: uniform
search; BB: black-box optimization; E: exhaustive search.
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Figure 26: Exhaustive search for parallel patching on Cars and DTD.
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Sequential patching Sequential fine-tuning

Figure 27: The evolution of sequential patching as more tasks are added. We show how a single
model patched with different strategies compares to using one specialized model per task, as more
patching tasks are added—the difference in average accuracy is shown in the y-axis, and referred to
as accuracy distance to endpoints (Section D). When sequentially patching, the distance in accuracy
to using specialized models increases when more tasks are added, although substantially less than
when using sequential fine-tuning (without weight interpolation). Results are shown for nine patching
tasks, for three different random seeds that control the order in which datasets are seen. The average
across random seeds is highlighted.

I.2 Sequential patching
In Figure 27, we show the evolution of sequential patching as more tasks are added. The accuracy
distance of using a single, patched model to using multiple specialized models increases with with
the number of patched tasks, leaving headroom for future work on more sophisticated sequential
strategies for patching. Interestingly, sequential patching outperforms sequential fine-tuning (where
no interpolation is used) by a large margin.

I.3 SplitCIFAR
Figure 28 compares the patching methods described in Section 2 when patching on ten tasks from
SplitCIFAR100 [56]. We split CIFAR100 randomly into ten different 10-way classification problems
which are either learned jointly (as in joint fine-tuning or joint patching) or independently. In
Figure 28 we show how the number of tasks learned affects accuracy on i) ImageNet, the supported
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task used for this experiment (first row), ii) the patching tasks (second row) and iii) average accuracy
on the patching tasks averaged with ImageNet accuracy (third row). We also display accuracy for
two additional tasks, Food101 and STL10, in rows four and five, respectively.

While this experiment explores our method in a more conventional continual learning setting, there
is a key difference: we also examine model accuracy on other tasks like ImageNet and Food101.
To choose the mixing coefficients we optimize for performance on the held-out validation set of all
patching tasks seen so far (i.e, the SplitCIFAR100 tasks) and the supported task ImageNet with equal
weight. This is the reason for also examining accuracy on Food101 and STL10—we want to make
sure that we are not overfitting to the representative supported task, ImageNet.

As intended, our patching procedures show less catastrophic forgetting than the alternative approaches
on ImageNet, Food101, and STL10. All methods are fine-tuned with a total of 2,000 iterations. As
such, we only use 200 iterations per-task when fine-tuning independently.
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Figure 28: Comparing the methods from Section 2 when patching on ten tasks from SplitCIFAR [56].
When choosing the mixing coefficient we optimize for average accuracy on the held-out validation
sets of the supported task ImageNet and the new patching tasks. We also show performance on
additional supported tasks Food101 and STL10 to ensure our procedure does not overfit to the
supported task used for choosing α. Our patching procedures show less catastrophic forgetting than
the alternative approaches on ImageNet, Food101, and STL10.
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J Typographic attacks
In this section we present more details on our typographic attacks experiments presented in Section 7.1.
We first discuss our procedure for creating synthetic typographic attacks. We then outline our real
world data collection scheme. Finally we present additional experimental details.
Synthetic dataset details. Starting with the SUN397 [78] dataset, we procedurally add text to images
as seen in Figure 29. We resize the shorter dimension to 224 pixels using bicubic interpolation and take
a 224 pixel by 224 pixel center crop, which is the standard CLIP resize and crop augmentation [52].
We randomize over three fonts: Courier, Helvetica and Times. For font size, we randomly sample
over the range 20 to 40 points. We consider eight colors, and sample uniformly from them: red, green,
blue, cyan, magenta, yellow, white, and black. To make sure font is visible, we outline text with a 1
point shadow that is a different color than the main font color. The text is randomly placed in the
image with checks to ensure that the text fits completely on the image. The text specifies an incorrect
class label, chosen at random. For instance, if the ground truth label from an image is “raceway”,
the text content will be uniformly sampled from the 397 − 1 = 396 other options. We apply this
typographic attack procedure on the originally SUN397 train and test sets to create attacked train and
test sets.
Real dataset details. To test if patching on synthetic typographic attacks transfers to real-world use-
cases, we generate a real-world test set of typographic attacks. We provide the following instructions
to in-house annotators: 1) Write the name of an object on a sticky note, then place the sticky note
on an object that is not the one that you have written. For instance, you can write “desk” on the
sticky note then put it on a mug. The objects should be reasonable categories (e.g., common objects,
animals, etc.). 2) Take a picture—make sure that the underlying object is centered and the text is
visible. We acquire consent from each annotator to use their images for research purposes and to
release data publicly. No faces or other identifying human characteristics are present in the dataset.

We show images from our dataset in Figure 30, highlighting the category diversity. As highlights:
calipers are attacked with text saying “ruler,” an artichoke is attacked with text saying “pineapple,”
and a GPU is attacked with text saying "CPU." Critically, none of the object categories—either in
the image or in the text attack—overlap with those in SUN397. This allows us to study typographic
attacks in the broad transfer setting (see Section 6 for more details).
Experimental details. We first fine-tune on the attacked version of SUN397, using our standard
fine-tuning setup discussed in Section 2. We then evaluate interpolated models on attacked SUN397
and real-world test sets. For SUN397, this amounts to standard multi-class classification as the
class space is fixed. For real typographic attacks, the task is binary classification between the image
category and the text category. The classification head for each image is generated using the frozen
CLIP text encoder.
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Figure 29: Synthetically generated typographic attacks used for patching. Starting with the
SUN397 dataset, we procedurally modify images by adding text specifying an incorrect class label
for the image. By patching on this data, we observe transfer to real-world classification of images
visualized in Figure 30—even with no class-space overlap.
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Figure 30: Real typographic attacks used for testing broad transfer. Here we present all 110
images from our real-world typographic attacks dataset. Annotators were asked to choose both the
target objects and the textual corruptions. Hence, during data collection there were no restrictions
on the true object semantic category or the typographic attack semantic category. Note that text is
visually dissimilar for the computer generated fonts in Figure 29. Additionally, images in this dataset
are object-centric, whereas images in Figure 29 capture a distribution of scenes.
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K Counting
We discuss specifics about the dataset and experimental setup for evaluating broad transfer for object
counting.
Dataset details. We consider the CLEVR dataset [30] with annotations for the number of objects
per image. We split the dataset based on its classes into train and test sets as seen in Figure 31. By
training on one split and testing on the other with unseen classes, we are able to evaluate broad
transfer for this counting task.
Experimental details. The patching task is a 5-way classification task. The evaluation task is a
3-way classification task, with a different set of classes. Again the head for the test-time task is
created zero-shot using the CLIP text encoder. Full interpolation curves for transfer and the original
task are presented in Figure 32.

L Visual Question Answering
For multiple-choice visual question answering, we use CLIP to contrast images with each candidate
answer. For each candidate answer, we construct a prompt that also includes the question following
the template “Question: [question text] Answer: [answer text]”. This text is fed to CLIP’s text encoder,
which remains frozen during the patching process.8 During fine-tuning, the weights of the vision
encoder are updated using a contrastive loss: the feature similarity with the text features of the correct
prompt are maximized with respect to the other candidates. We patch and evaluate on multiple-choice
VQA v1 [4], where each question is associated with 18 candidate answers. Interestingly, 87% of
the prompts used for evaluation are not present in the training data. The results are shown in Figure
33. Patching improves VQA performance by 13 to 18 percentage points, while reducing ImageNet
accuracy by less than one percentage point.

M Computational resources
For all of our experiments, we used NVIDIA A-40 GPUs with 46GB of RAM from an internal cluster.
We estimate the total amount of compute used for the experiments in this paper is around 10 thousand
GPU hours.

8We found that unfreezing the text encoder improved accuracy, but we present results with an frozen text
encoder for experimental consistency.

3 objects 4 objects 5 objects 6 objects 7 objects 8 objects 9 objects 10 objects

Test categories Train categories

Figure 31: CLEVR Counting images and splits. Each image has a number of objects between 3
and 10. For a patching (train) task, models are fine-tuned on images with 4, 5, 6, 8 or 9 objects. We
test on images with 3, 7 or 10 objects to evaluate the model’s interpolation and extrapolation of the
class space.
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Figure 32: CLEVR Counting broad transfer interpolation plots. Curves for different mixing
coefficients for (a) the broad transfer task and (b) the patching task. The curves suggest that training
on the patching task transfer to the training task, even though the class spaces are different.
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Figure 33: Patching for visual question answering. For all models, patching can improve the
performance on multiple choice VQA v1 [4] with little loss in ImageNet accuracy.

N Tabular results
We now present numerical results for the main experiments presented in this paper. Tables 6 to 10
present results for patching on a single task, for various supported tasks. Table 11 details results for
various strategies for patching on multiple tasks.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN
α S P S P S P S P S P S P S P S P S P Avg

B/32

0.00 63.4 59.6 63.4 44.1 63.4 45.9 63.4 32.4 63.4 22.6 63.4 48.3 63.4 60.7 63.4 63.1 63.4 31.5 54.4
0.05 63.4 61.9 63.4 47.0 63.4 63.4 63.4 39.7 63.4 25.5 63.4 60.9 63.5 65.9 63.5 64.4 63.4 39.9 57.7
0.10 63.3 63.8 63.4 50.1 63.3 74.3 63.3 48.1 63.4 35.7 63.3 77.0 63.6 71.0 63.5 65.9 63.4 50.1 61.5
0.15 63.3 65.5 63.4 53.7 63.2 82.0 63.2 57.6 63.5 47.5 63.2 87.3 63.5 75.9 63.5 67.2 63.3 60.9 64.9
0.20 63.2 67.4 63.3 56.5 63.0 89.3 63.0 68.3 63.4 55.6 62.8 92.6 63.5 79.9 63.4 68.5 63.1 70.4 67.6
0.25 63.1 69.1 63.1 59.7 62.7 93.3 62.8 78.5 63.3 60.2 62.4 95.7 63.3 83.7 63.3 69.5 62.8 78.3 69.7
0.30 63.0 70.7 62.9 62.8 62.4 95.4 62.4 85.9 63.1 66.1 62.1 97.3 63.2 86.6 63.2 70.5 62.6 84.3 71.4
0.35 62.8 72.4 62.7 65.7 62.0 96.4 62.0 90.9 62.8 69.3 61.7 98.5 63.0 89.1 63.1 71.6 62.1 88.8 72.5
0.40 62.5 73.6 62.4 68.1 61.5 97.0 61.3 93.9 62.6 72.3 61.2 99.0 62.7 91.0 62.8 72.5 61.6 92.0 73.2
0.45 62.3 74.8 62.0 70.1 61.0 97.6 60.7 95.7 62.3 73.4 60.6 99.3 62.4 92.4 62.5 73.4 61.1 94.0 73.6
0.50 62.0 75.8 61.5 72.3 60.3 97.9 60.0 96.8 62.0 75.1 60.0 99.4 62.0 93.3 62.1 74.2 60.5 95.2 73.9
0.55 61.6 76.4 60.9 74.2 59.5 98.1 59.0 97.5 61.5 76.9 59.0 99.5 61.6 93.7 61.7 74.7 59.6 96.1 74.0
0.60 61.2 77.3 60.2 75.3 58.7 98.2 58.0 97.8 60.9 78.1 58.1 99.6 61.1 94.3 61.3 75.2 58.7 96.5 73.9
0.65 60.6 78.0 59.3 76.2 57.7 98.4 56.7 98.1 60.2 79.2 56.9 99.6 60.4 94.7 60.6 75.6 57.7 96.7 73.7
0.70 60.1 78.4 58.3 76.8 56.6 98.5 55.1 98.2 59.6 79.5 55.7 99.6 59.8 94.9 60.0 75.9 56.4 96.9 73.4
0.75 59.5 78.9 57.3 77.7 55.4 98.6 53.3 98.4 58.7 79.5 54.1 99.6 58.9 95.1 59.3 76.1 55.0 97.0 72.9
0.80 58.8 79.1 56.1 78.3 54.0 98.5 51.1 98.6 57.8 80.2 52.3 99.6 58.1 95.1 58.5 76.1 53.4 97.1 72.4
0.85 58.1 79.6 54.7 78.6 52.6 98.5 48.6 98.6 56.8 79.2 50.3 99.6 57.0 95.0 57.7 76.0 51.6 97.1 71.6
0.90 57.3 79.5 53.0 78.7 51.0 98.5 45.8 98.6 55.6 78.9 48.1 99.6 55.9 95.0 56.8 75.8 49.5 97.2 70.8
0.95 56.2 79.4 51.3 78.9 49.1 98.5 42.7 98.5 54.3 78.2 45.4 99.6 54.6 95.1 55.8 75.4 47.2 97.2 69.9
1.00 55.2 79.2 49.3 78.7 47.2 98.6 39.1 98.5 52.9 77.9 42.5 99.6 53.2 95.0 54.6 75.1 44.7 97.2 68.8

B/16

0.00 68.3 64.7 68.3 45.0 68.3 53.9 68.3 43.4 68.3 30.5 68.3 51.3 68.3 65.8 68.3 65.5 68.3 52.0 60.4
0.05 68.4 66.9 68.4 47.4 68.4 66.8 68.4 49.0 68.4 40.5 68.3 64.4 68.5 71.2 68.5 66.9 68.4 60.6 63.9
0.10 68.4 68.9 68.4 49.7 68.5 80.0 68.4 55.3 68.4 53.9 68.3 83.0 68.6 75.9 68.5 68.4 68.4 67.8 67.7
0.15 68.4 71.1 68.5 53.0 68.4 89.5 68.4 62.8 68.5 58.5 68.1 92.1 68.6 80.0 68.6 69.7 68.4 74.5 70.4
0.20 68.4 73.3 68.5 56.5 68.2 94.1 68.4 71.1 68.5 59.8 68.0 95.8 68.7 84.1 68.6 71.0 68.2 80.4 72.3
0.25 68.3 75.4 68.4 59.5 68.0 96.1 68.4 80.5 68.4 62.2 67.9 97.6 68.7 87.4 68.6 72.3 68.1 85.6 74.0
0.30 68.2 77.2 68.3 63.6 67.8 97.1 68.2 88.0 68.4 68.4 67.7 98.4 68.6 90.3 68.5 73.4 67.9 89.8 75.5
0.35 68.1 79.1 68.1 67.0 67.5 97.6 68.0 92.7 68.3 72.3 67.5 99.0 68.5 92.1 68.5 74.5 67.7 92.9 76.6
0.40 67.8 80.9 67.8 70.4 67.2 98.0 67.8 95.5 68.2 74.0 67.2 99.3 68.4 93.5 68.3 75.4 67.5 94.9 77.3
0.45 67.6 82.0 67.5 73.5 66.7 98.3 67.5 96.9 67.9 75.9 66.8 99.4 68.1 94.5 68.1 76.2 67.1 96.1 77.8
0.50 67.3 83.5 67.1 76.1 66.3 98.6 67.2 97.6 67.7 78.3 66.3 99.4 67.9 95.0 67.9 77.0 66.7 96.7 78.1
0.55 67.0 84.5 66.7 77.6 65.8 98.7 66.8 98.1 67.4 79.5 65.7 99.5 67.6 95.5 67.6 77.7 66.2 97.2 78.3
0.60 66.7 85.2 66.1 79.4 65.2 98.7 66.3 98.4 67.1 81.4 65.2 99.6 67.2 95.8 67.3 78.2 65.8 97.4 78.4
0.65 66.3 85.9 65.5 80.6 64.6 98.9 65.6 98.7 66.7 82.6 64.5 99.6 66.8 96.0 66.9 78.4 65.1 97.6 78.3
0.70 65.9 86.3 64.7 81.1 63.8 99.0 64.8 98.7 66.3 83.8 63.6 99.7 66.4 96.2 66.3 78.7 64.3 97.6 78.2
0.75 65.3 86.8 63.9 81.3 62.9 99.0 63.7 98.8 65.9 84.2 62.7 99.7 65.9 96.3 65.8 78.9 63.5 97.7 77.9
0.80 64.8 87.0 63.0 82.4 61.9 99.0 62.5 98.9 65.3 84.7 61.7 99.7 65.3 96.4 65.1 79.1 62.6 97.7 77.6
0.85 64.1 87.2 61.9 82.3 60.6 99.0 61.0 98.9 64.7 84.7 60.5 99.7 64.6 96.4 64.5 79.2 61.5 97.7 77.1
0.90 63.5 87.2 60.6 82.3 59.3 99.1 59.3 98.9 64.1 84.8 58.9 99.7 63.9 96.4 63.6 79.3 60.1 97.7 76.6
0.95 62.7 87.2 59.2 82.2 57.7 99.1 57.1 99.0 63.3 84.7 57.2 99.7 63.2 96.4 62.7 79.2 58.6 97.7 75.9
1.00 61.9 87.0 57.5 82.3 56.0 99.1 54.7 99.0 62.4 84.8 55.2 99.7 62.2 96.4 61.7 79.0 56.8 97.7 75.2

L/14

0.00 75.5 77.8 75.5 55.4 75.5 60.2 75.5 50.6 75.5 25.9 75.5 76.4 75.5 71.0 75.5 68.3 75.5 58.6 68.0
0.05 75.6 79.9 75.6 57.8 75.5 74.6 75.6 57.9 75.6 33.2 75.6 88.3 75.6 76.5 75.7 69.7 75.6 67.0 71.4
0.10 75.5 82.1 75.6 60.6 75.6 88.1 75.6 65.6 75.5 47.0 75.6 94.5 75.7 81.1 75.8 71.3 75.6 73.2 74.7
0.15 75.6 84.0 75.6 63.8 75.6 93.9 75.6 74.8 75.6 54.3 75.6 97.4 75.7 85.8 75.8 72.9 75.6 78.9 77.0
0.20 75.6 85.8 75.6 66.8 75.6 96.6 75.6 83.3 75.5 60.1 75.5 98.6 75.7 89.3 75.8 74.3 75.7 84.1 78.8
0.25 75.5 87.5 75.6 69.5 75.5 97.7 75.5 89.6 75.5 65.8 75.5 99.2 75.7 92.1 75.8 75.5 75.7 88.7 80.3
0.30 75.4 88.5 75.6 71.9 75.4 98.1 75.5 93.6 75.5 70.6 75.6 99.4 75.7 93.5 75.9 76.8 75.6 92.5 81.4
0.35 75.4 89.7 75.6 73.8 75.4 98.4 75.5 95.7 75.5 73.0 75.5 99.5 75.7 94.7 75.8 77.9 75.6 94.9 82.1
0.40 75.3 90.4 75.5 75.7 75.3 98.6 75.5 97.0 75.4 75.8 75.4 99.6 75.7 95.5 75.8 78.9 75.5 96.3 82.6
0.45 75.3 91.0 75.4 78.0 75.1 98.8 75.4 97.8 75.3 77.5 75.3 99.7 75.7 95.9 75.8 79.8 75.4 97.1 83.0
0.50 75.2 91.6 75.3 79.1 74.9 98.9 75.3 98.4 75.2 80.6 75.2 99.8 75.6 96.2 75.7 80.6 75.3 97.5 83.4
0.55 75.1 92.1 75.1 80.3 74.7 98.9 75.2 98.7 75.1 82.8 75.1 99.8 75.5 96.6 75.5 81.3 75.2 97.7 83.6
0.60 75.0 92.4 74.9 81.2 74.4 99.0 75.1 98.9 75.0 84.0 74.9 99.8 75.4 96.8 75.4 81.8 75.0 97.9 83.7
0.65 74.9 92.6 74.7 82.1 74.1 99.1 75.0 99.0 75.0 84.7 74.8 99.8 75.3 96.9 75.2 82.1 74.8 97.9 83.8
0.70 74.7 92.8 74.5 82.3 73.8 99.1 74.7 99.1 74.8 85.4 74.6 99.8 75.2 97.0 75.0 82.4 74.6 98.0 83.8
0.75 74.5 92.8 74.2 82.7 73.4 99.2 74.6 99.2 74.7 85.7 74.4 99.8 75.1 97.1 74.6 82.6 74.3 98.0 83.7
0.80 74.3 92.9 73.9 82.8 73.0 99.3 74.4 99.2 74.5 85.7 74.2 99.8 74.9 97.1 74.4 82.7 74.0 98.0 83.6
0.85 74.0 92.9 73.6 83.0 72.4 99.3 74.2 99.2 74.4 85.8 73.9 99.8 74.7 97.0 74.0 82.8 73.8 98.1 83.5
0.90 73.8 92.8 73.2 83.6 71.8 99.3 73.9 99.3 74.1 86.2 73.7 99.8 74.4 97.0 73.6 82.7 73.4 98.0 83.4
0.95 73.5 92.8 72.8 83.6 71.2 99.2 73.5 99.3 73.9 86.4 73.3 99.8 74.1 97.0 73.2 82.6 73.0 98.0 83.2
1.00 73.1 92.8 72.3 83.7 70.5 99.2 73.1 99.3 73.6 86.4 72.9 99.8 73.8 96.9 72.7 82.4 72.6 98.0 82.9

Table 6: Patching on a single new task where ImageNet is the supported task. S: accuracy on the
supported task (ImageNet); P: accuracy on the patching task; Avg: average accuracy on patching and
supported tasks.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN
α S P S P S P S P S P S P S P S P S P Avg

B/32

0.00 89.7 59.6 89.8 44.1 89.7 45.9 89.7 32.4 89.7 22.6 89.7 48.3 89.8 60.7 89.7 63.1 89.7 31.5 67.6
0.05 89.6 61.9 89.7 47.0 90.1 63.4 90.1 39.7 89.8 25.5 90.2 60.9 89.8 65.9 89.5 64.4 90.0 39.9 71.0
0.10 89.5 63.8 89.6 50.1 90.6 74.3 90.2 48.1 89.8 35.7 90.4 77.0 89.7 71.0 89.4 65.9 90.3 50.1 74.7
0.15 89.3 65.5 89.5 53.7 90.7 82.0 90.3 57.6 89.8 47.5 90.2 87.3 89.6 75.9 89.4 67.2 90.3 60.9 78.1
0.20 89.3 67.4 89.4 56.5 90.8 89.3 90.1 68.3 89.7 55.6 90.2 92.6 89.6 79.9 89.2 68.5 90.0 70.4 80.9
0.25 89.2 69.1 89.2 59.7 90.6 93.3 89.8 78.5 89.4 60.2 89.7 95.7 89.4 83.7 89.2 69.5 89.6 78.3 83.0
0.30 89.0 70.7 88.9 62.8 90.2 95.4 89.1 85.9 89.2 66.1 89.3 97.3 88.9 86.6 89.2 70.5 89.1 84.3 84.6
0.35 88.9 72.4 88.6 65.7 90.1 96.4 88.0 90.9 88.9 69.3 88.7 98.5 88.5 89.1 89.2 71.6 88.2 88.8 85.7
0.40 88.5 73.6 88.0 68.1 89.6 97.0 86.9 93.9 88.2 72.3 87.8 99.0 87.9 91.0 89.2 72.5 87.4 92.0 86.3
0.45 88.3 74.8 87.3 70.1 89.2 97.6 85.0 95.7 87.7 73.4 86.7 99.3 87.4 92.4 89.1 73.4 86.0 94.0 86.5
0.50 88.1 75.8 86.8 72.3 88.6 97.9 83.0 96.8 87.2 75.1 85.2 99.4 86.9 93.3 88.8 74.2 84.4 95.2 86.6
0.55 87.6 76.4 86.4 74.2 87.7 98.1 80.4 97.5 86.5 76.9 83.3 99.5 86.2 93.7 88.5 74.7 82.3 96.1 86.5
0.60 87.2 77.3 85.7 75.3 86.9 98.2 77.2 97.8 85.8 78.1 80.8 99.6 85.8 94.3 88.2 75.2 79.9 96.5 86.1
0.65 86.7 78.0 84.8 76.2 85.7 98.4 73.3 98.1 84.9 79.2 77.8 99.6 85.1 94.7 87.9 75.6 76.9 96.7 85.5
0.70 86.2 78.4 83.9 76.8 84.5 98.5 69.3 98.2 83.9 79.5 74.5 99.6 84.0 94.9 87.5 75.9 73.7 96.9 84.8
0.75 85.3 78.9 82.8 77.7 83.0 98.6 65.3 98.4 82.5 79.5 70.6 99.6 83.0 95.1 87.2 76.1 70.1 97.0 83.9
0.80 84.2 79.1 81.6 78.3 81.0 98.5 61.0 98.6 80.7 80.2 66.1 99.6 82.0 95.1 86.6 76.1 66.2 97.1 82.9
0.85 82.8 79.6 80.3 78.6 79.2 98.5 56.2 98.6 79.0 79.2 60.5 99.6 80.3 95.0 86.1 76.0 62.2 97.1 81.6
0.90 81.4 79.5 78.6 78.7 76.9 98.5 51.9 98.6 77.0 78.9 54.6 99.6 78.9 95.0 85.6 75.8 58.4 97.2 80.3
0.95 80.0 79.4 77.0 78.9 74.1 98.5 47.3 98.5 74.7 78.2 48.9 99.6 77.3 95.1 84.9 75.4 54.5 97.2 78.9
1.00 78.2 79.2 75.0 78.7 71.5 98.6 42.6 98.5 72.1 77.9 42.9 99.6 75.2 95.0 84.2 75.1 50.4 97.2 77.3

B/16

0.00 90.8 64.7 90.8 45.0 90.8 53.9 90.8 43.4 90.8 30.5 90.8 51.3 90.8 65.8 90.8 65.5 90.8 52.0 71.6
0.05 90.8 66.9 90.7 47.4 91.4 66.8 91.1 49.0 90.8 40.5 91.2 64.4 91.0 71.2 90.6 66.9 91.3 60.6 75.1
0.10 90.8 68.9 90.5 49.7 91.6 80.0 91.3 55.3 90.7 53.9 91.6 83.0 91.0 75.9 90.5 68.4 91.5 67.8 79.0
0.15 90.7 71.1 90.4 53.0 91.9 89.5 91.3 62.8 90.6 58.5 91.8 92.1 91.0 80.0 90.2 69.7 91.6 74.5 81.7
0.20 90.8 73.3 90.2 56.5 92.0 94.1 91.0 71.1 90.6 59.8 91.8 95.8 91.2 84.1 90.0 71.0 91.7 80.4 83.6
0.25 90.7 75.4 90.0 59.5 92.0 96.1 90.6 80.5 90.5 62.2 91.5 97.6 91.0 87.4 89.7 72.3 91.6 85.6 85.2
0.30 90.6 77.2 89.9 63.6 91.8 97.1 90.1 88.0 90.6 68.4 91.5 98.4 90.9 90.3 89.5 73.4 91.2 89.8 86.8
0.35 90.5 79.1 89.8 67.0 91.7 97.6 89.7 92.7 90.5 72.3 91.0 99.0 90.7 92.1 89.3 74.5 90.6 92.9 87.8
0.40 90.3 80.9 89.6 70.4 91.4 98.0 88.9 95.5 90.4 74.0 90.6 99.3 90.6 93.5 89.2 75.4 90.2 94.9 88.5
0.45 90.0 82.0 89.5 73.5 90.8 98.3 87.8 96.9 90.3 75.9 90.1 99.4 90.5 94.5 89.0 76.2 89.6 96.1 88.9
0.50 89.9 83.5 89.3 76.1 90.0 98.6 86.6 97.6 90.1 78.3 89.7 99.4 90.1 95.0 88.7 77.0 88.8 96.7 89.2
0.55 89.4 84.5 89.1 77.6 89.2 98.7 84.8 98.1 89.9 79.5 88.9 99.5 89.8 95.5 88.5 77.7 87.9 97.2 89.2
0.60 89.1 85.2 88.8 79.4 88.2 98.7 82.9 98.4 89.5 81.4 87.9 99.6 89.5 95.8 88.4 78.2 86.4 97.4 89.2
0.65 88.4 85.9 88.4 80.6 86.9 98.9 80.2 98.7 89.0 82.6 86.9 99.6 88.9 96.0 88.1 78.4 84.6 97.6 88.9
0.70 87.4 86.3 87.9 81.1 85.5 99.0 77.1 98.7 88.6 83.8 85.7 99.7 88.4 96.2 87.7 78.7 82.3 97.6 88.4
0.75 86.1 86.8 87.5 81.3 83.8 99.0 73.6 98.8 88.2 84.2 84.3 99.7 87.8 96.3 87.5 78.9 79.9 97.7 87.9
0.80 84.3 87.0 86.9 82.4 82.0 99.0 69.5 98.9 87.5 84.7 82.7 99.7 87.2 96.4 87.2 79.1 77.1 97.7 87.2
0.85 82.5 87.2 86.3 82.3 80.2 99.0 65.4 98.9 86.7 84.7 80.8 99.7 86.4 96.4 86.8 79.2 74.1 97.7 86.3
0.90 80.7 87.2 85.3 82.3 78.0 99.1 60.8 98.9 85.9 84.8 78.4 99.7 85.6 96.4 86.3 79.3 70.8 97.7 85.4
0.95 79.0 87.2 84.5 82.2 75.6 99.1 56.0 99.0 85.1 84.7 75.4 99.7 84.5 96.4 85.7 79.2 67.0 97.7 84.3
1.00 77.9 87.0 83.5 82.3 72.9 99.1 51.5 99.0 83.9 84.8 71.7 99.7 83.5 96.4 85.2 79.0 63.1 97.7 83.2

L/14

0.00 95.7 77.8 95.7 55.4 95.7 60.2 95.7 50.6 95.7 25.9 95.7 76.4 95.7 71.0 95.7 68.3 95.7 58.6 78.1
0.05 95.7 79.9 95.7 57.8 96.0 74.6 95.8 57.9 95.7 33.2 95.9 88.3 95.8 76.5 95.7 69.7 95.9 67.0 81.5
0.10 95.7 82.1 95.7 60.6 96.2 88.1 95.8 65.6 95.6 47.0 96.0 94.5 95.9 81.1 95.7 71.3 96.0 73.2 84.8
0.15 95.6 84.0 95.6 63.8 96.3 93.9 95.6 74.8 95.5 54.3 96.0 97.4 96.0 85.8 95.6 72.9 95.9 78.9 87.1
0.20 95.5 85.8 95.6 66.8 96.4 96.6 95.6 83.3 95.5 60.1 96.0 98.6 95.9 89.3 95.5 74.3 95.8 84.1 88.9
0.25 95.5 87.5 95.5 69.5 96.1 97.7 95.2 89.6 95.3 65.8 96.0 99.2 96.0 92.1 95.5 75.5 95.5 88.7 90.3
0.30 95.4 88.5 95.5 71.9 96.0 98.1 94.9 93.6 95.2 70.6 96.0 99.4 95.9 93.5 95.4 76.8 95.4 92.5 91.4
0.35 95.3 89.7 95.5 73.8 95.9 98.4 94.5 95.7 95.1 73.0 95.9 99.5 95.8 94.7 95.3 77.9 95.2 94.9 92.0
0.40 95.2 90.4 95.4 75.7 95.8 98.6 94.0 97.0 95.0 75.8 95.7 99.6 95.8 95.5 95.2 78.9 94.8 96.3 92.5
0.45 95.0 91.0 95.3 78.0 95.7 98.8 93.4 97.8 94.9 77.5 95.5 99.7 95.7 95.9 95.2 79.8 94.4 97.1 92.8
0.50 94.8 91.6 95.2 79.1 95.5 98.9 92.5 98.4 94.8 80.6 95.1 99.8 95.6 96.2 95.1 80.6 94.1 97.5 93.1
0.55 94.5 92.1 95.1 80.3 95.0 98.9 91.2 98.7 94.7 82.8 94.7 99.8 95.6 96.6 95.0 81.3 93.6 97.7 93.2
0.60 94.3 92.4 95.0 81.2 94.6 99.0 89.8 98.9 94.5 84.0 94.4 99.8 95.5 96.8 95.0 81.8 93.1 97.9 93.2
0.65 94.1 92.6 94.7 82.1 94.2 99.1 88.3 99.0 94.3 84.7 93.9 99.8 95.4 96.9 95.0 82.1 92.4 97.9 93.1
0.70 94.0 92.8 94.6 82.3 93.7 99.1 86.2 99.1 94.1 85.4 93.4 99.8 95.2 97.0 94.9 82.4 91.5 98.0 93.0
0.75 93.8 92.8 94.4 82.7 93.1 99.2 84.1 99.2 93.8 85.7 92.8 99.8 94.7 97.1 94.8 82.6 90.3 98.0 92.7
0.80 93.5 92.9 94.2 82.8 92.3 99.3 81.9 99.2 93.4 85.7 92.1 99.8 94.4 97.1 94.7 82.7 89.2 98.0 92.4
0.85 93.3 92.9 94.0 83.0 91.4 99.3 79.6 99.2 93.0 85.8 91.3 99.8 94.0 97.0 94.5 82.8 88.2 98.1 92.1
0.90 93.0 92.8 93.9 83.6 90.6 99.3 77.2 99.3 92.6 86.2 90.5 99.8 93.5 97.0 94.3 82.7 86.7 98.0 91.7
0.95 92.6 92.8 93.5 83.6 89.5 99.2 74.3 99.3 92.2 86.4 89.5 99.8 93.1 97.0 94.2 82.6 85.0 98.0 91.3
1.00 92.1 92.8 93.2 83.7 87.9 99.2 71.5 99.3 91.7 86.4 88.1 99.8 92.5 96.9 94.1 82.4 83.4 98.0 90.7

Table 7: Patching on a single new task where CIFAR10 is the supported task. S: accuracy on the
supported task (CIFAR10); P: accuracy on the patching task; Avg: average accuracy on patching and
supported tasks.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN
α S P S P S P S P S P S P S P S P S P Avg

B/32

0.00 65.1 59.6 65.1 44.1 65.1 45.9 65.1 32.4 65.1 22.6 65.1 48.3 65.1 60.7 65.1 63.1 65.1 31.5 55.2
0.05 64.6 61.9 64.9 47.0 66.5 63.4 65.8 39.7 65.1 25.5 66.1 60.9 65.2 65.9 65.1 64.4 65.7 39.9 58.8
0.10 64.3 63.8 64.9 50.1 67.7 74.3 66.5 48.1 65.5 35.7 67.1 77.0 65.7 71.0 64.9 65.9 66.0 50.1 62.7
0.15 64.2 65.5 65.1 53.7 68.2 82.0 66.7 57.6 66.0 47.5 67.2 87.3 66.2 75.9 64.7 67.2 66.2 60.9 66.2
0.20 64.2 67.4 65.2 56.5 68.3 89.3 66.1 68.3 66.5 55.6 66.9 92.6 66.8 79.9 64.8 68.5 66.0 70.4 69.1
0.25 64.2 69.1 65.4 59.7 68.3 93.3 65.3 78.5 66.6 60.2 66.1 95.7 66.7 83.7 64.9 69.5 65.4 78.3 71.2
0.30 64.2 70.7 65.2 62.8 67.8 95.4 64.0 85.9 66.4 66.1 64.7 97.3 66.2 86.6 64.7 70.5 64.4 84.3 72.6
0.35 64.2 72.4 65.2 65.7 66.7 96.4 62.3 90.9 66.3 69.3 63.0 98.5 65.9 89.1 64.7 71.6 62.7 88.8 73.5
0.40 64.4 73.6 64.7 68.1 65.6 97.0 60.3 93.9 65.8 72.3 61.1 99.0 65.3 91.0 64.5 72.5 60.6 92.0 74.0
0.45 64.3 74.8 64.1 70.1 64.1 97.6 57.7 95.7 64.9 73.4 58.6 99.3 64.5 92.4 64.3 73.4 58.3 94.0 74.0
0.50 64.2 75.8 63.1 72.3 62.5 97.9 54.6 96.8 63.8 75.1 56.1 99.4 63.8 93.3 64.3 74.2 55.4 95.2 73.8
0.55 63.9 76.4 61.9 74.2 60.9 98.1 50.9 97.5 62.8 76.9 53.0 99.5 62.9 93.7 63.9 74.7 52.4 96.1 73.3
0.60 63.7 77.3 60.2 75.3 58.6 98.2 47.2 97.8 61.5 78.1 49.6 99.6 61.5 94.3 63.3 75.2 49.3 96.5 72.6
0.65 63.2 78.0 58.7 76.2 56.3 98.4 43.4 98.1 60.2 79.2 45.9 99.6 59.9 94.7 62.7 75.6 46.2 96.7 71.8
0.70 62.5 78.4 56.7 76.8 53.8 98.5 39.4 98.2 58.5 79.5 42.2 99.6 58.6 94.9 62.0 75.9 43.1 96.9 70.9
0.75 61.8 78.9 54.9 77.7 51.3 98.6 35.6 98.4 56.8 79.5 38.4 99.6 56.8 95.1 61.2 76.1 40.0 97.0 69.9
0.80 61.0 79.1 52.9 78.3 48.5 98.5 32.0 98.6 54.9 80.2 34.1 99.6 54.9 95.1 60.4 76.1 36.6 97.1 68.8
0.85 60.2 79.6 50.4 78.6 45.3 98.5 28.4 98.6 53.1 79.2 29.9 99.6 52.9 95.0 59.3 76.0 33.5 97.1 67.5
0.90 59.0 79.5 48.0 78.7 42.5 98.5 24.9 98.6 51.0 78.9 26.0 99.6 51.1 95.0 58.4 75.8 30.6 97.2 66.3
0.95 57.9 79.4 45.4 78.9 39.8 98.5 21.9 98.5 48.6 78.2 22.2 99.6 48.9 95.1 56.9 75.4 27.4 97.2 65.0
1.00 56.5 79.2 42.4 78.7 36.7 98.6 18.8 98.5 45.9 77.9 18.9 99.6 46.6 95.0 55.8 75.1 24.3 97.2 63.6

B/16

0.00 68.2 64.7 68.2 45.0 68.2 53.9 68.2 43.4 68.2 30.5 68.2 51.3 68.2 65.8 68.2 65.5 68.2 52.0 60.3
0.05 68.3 66.9 68.3 47.4 69.5 66.8 68.9 49.0 68.3 40.5 69.0 64.4 68.5 71.2 67.9 66.9 68.8 60.6 64.0
0.10 68.0 68.9 68.0 49.7 70.3 80.0 69.4 55.3 68.3 53.9 69.6 83.0 68.6 75.9 67.6 68.4 69.3 67.8 67.9
0.15 67.9 71.1 67.8 53.0 70.7 89.5 69.4 62.8 68.3 58.5 70.0 92.1 68.7 80.0 67.2 69.7 69.4 74.5 70.6
0.20 67.8 73.3 67.7 56.5 71.0 94.1 69.2 71.1 68.3 59.8 70.1 95.8 68.9 84.1 66.9 71.0 69.3 80.4 72.5
0.25 67.5 75.4 67.5 59.5 70.9 96.1 68.8 80.5 68.3 62.2 69.9 97.6 69.2 87.4 66.5 72.3 68.8 85.6 74.1
0.30 67.3 77.2 67.3 63.6 70.6 97.1 68.1 88.0 68.2 68.4 69.5 98.4 69.2 90.3 66.1 73.4 67.8 89.8 75.6
0.35 66.9 79.1 67.1 67.0 70.1 97.6 67.0 92.7 68.2 72.3 69.0 99.0 69.4 92.1 65.9 74.5 66.7 92.9 76.5
0.40 66.4 80.9 66.7 70.4 69.3 98.0 65.5 95.5 68.0 74.0 68.2 99.3 69.2 93.5 65.5 75.4 65.5 94.9 77.0
0.45 66.1 82.0 66.4 73.5 68.2 98.3 63.6 96.9 67.9 75.9 66.8 99.4 69.1 94.5 65.1 76.2 63.7 96.1 77.2
0.50 65.5 83.5 65.8 76.1 67.0 98.6 61.2 97.6 67.8 78.3 65.1 99.4 68.6 95.0 64.6 77.0 61.6 96.7 77.2
0.55 64.9 84.5 65.5 77.6 65.7 98.7 57.9 98.1 67.4 79.5 63.5 99.5 68.2 95.5 64.1 77.7 59.6 97.2 76.9
0.60 64.5 85.2 65.1 79.4 64.1 98.7 53.8 98.4 66.7 81.4 61.3 99.6 67.5 95.8 63.7 78.2 57.1 97.4 76.6
0.65 63.8 85.9 64.3 80.6 62.4 98.9 49.9 98.7 65.9 82.6 59.1 99.6 66.7 96.0 63.0 78.4 53.9 97.6 76.0
0.70 63.3 86.3 63.5 81.1 60.0 99.0 45.8 98.7 65.1 83.8 56.7 99.7 65.8 96.2 62.5 78.7 50.6 97.6 75.2
0.75 62.6 86.8 62.7 81.3 57.9 99.0 41.4 98.8 63.8 84.2 53.6 99.7 64.6 96.3 61.8 78.9 47.2 97.7 74.3
0.80 61.8 87.0 61.8 82.4 55.3 99.0 37.2 98.9 62.9 84.7 50.3 99.7 63.3 96.4 61.2 79.1 44.0 97.7 73.5
0.85 60.7 87.2 60.4 82.3 53.1 99.0 33.1 98.9 61.5 84.7 46.4 99.7 62.1 96.4 60.3 79.2 40.7 97.7 72.4
0.90 59.6 87.2 59.0 82.3 50.7 99.1 28.9 98.9 59.9 84.8 42.1 99.7 60.7 96.4 59.6 79.3 37.1 97.7 71.3
0.95 58.5 87.2 56.9 82.2 47.8 99.1 25.1 99.0 58.5 84.7 37.7 99.7 59.4 96.4 58.8 79.2 33.1 97.7 70.1
1.00 57.0 87.0 55.0 82.3 44.8 99.1 22.0 99.0 56.9 84.8 32.6 99.7 57.3 96.4 57.8 79.0 29.9 97.7 68.8

L/14

0.00 78.3 77.8 78.3 55.4 78.3 60.2 78.3 50.6 78.3 25.9 78.3 76.4 78.3 71.0 78.3 68.3 78.3 58.6 69.4
0.05 78.0 79.9 78.2 57.8 79.3 74.6 78.5 57.9 78.3 33.2 78.9 88.3 78.5 76.5 78.1 69.7 78.9 67.0 72.9
0.10 77.8 82.1 78.2 60.6 79.7 88.1 78.6 65.6 78.2 47.0 79.4 94.5 78.7 81.1 78.0 71.3 79.2 73.2 76.2
0.15 77.3 84.0 78.1 63.8 80.2 93.9 78.5 74.8 78.0 54.3 79.8 97.4 78.8 85.8 77.8 72.9 79.4 78.9 78.5
0.20 76.9 85.8 77.9 66.8 80.5 96.6 78.3 83.3 77.9 60.1 80.0 98.6 79.0 89.3 77.6 74.3 79.5 84.1 80.3
0.25 76.7 87.5 77.5 69.5 80.6 97.7 78.0 89.6 77.7 65.8 80.1 99.2 79.1 92.1 77.4 75.5 79.2 88.7 81.8
0.30 76.5 88.5 77.4 71.9 80.4 98.1 77.5 93.6 77.6 70.6 79.9 99.4 79.3 93.5 77.3 76.8 78.8 92.5 82.7
0.35 76.1 89.7 77.3 73.8 80.2 98.4 76.8 95.7 77.4 73.0 79.8 99.5 79.3 94.7 77.1 77.9 78.3 94.9 83.3
0.40 75.8 90.4 77.2 75.7 79.9 98.6 75.8 97.0 77.3 75.8 79.5 99.6 79.3 95.5 76.8 78.9 77.6 96.3 83.7
0.45 75.3 91.0 77.0 78.0 79.2 98.8 74.7 97.8 77.1 77.5 78.9 99.7 79.2 95.9 76.7 79.8 76.4 97.1 83.9
0.50 74.9 91.6 76.7 79.1 78.5 98.9 73.2 98.4 77.1 80.6 78.2 99.8 78.9 96.2 76.5 80.6 75.1 97.5 84.0
0.55 74.4 92.1 76.4 80.3 77.8 98.9 71.7 98.7 77.1 82.8 77.4 99.8 78.8 96.6 76.2 81.3 73.6 97.7 84.0
0.60 74.2 92.4 76.2 81.2 76.5 99.0 69.7 98.9 77.0 84.0 76.4 99.8 78.7 96.8 75.9 81.8 72.1 97.9 83.8
0.65 74.1 92.6 75.9 82.1 75.4 99.1 67.3 99.0 76.9 84.7 75.5 99.8 78.4 96.9 75.6 82.1 70.4 97.9 83.5
0.70 73.7 92.8 75.8 82.3 73.9 99.1 64.9 99.1 76.6 85.4 74.2 99.8 78.1 97.0 75.3 82.4 68.5 98.0 83.1
0.75 73.4 92.8 75.6 82.7 72.4 99.2 62.3 99.2 76.4 85.7 72.8 99.8 77.7 97.1 75.1 82.6 66.5 98.0 82.7
0.80 73.2 92.9 75.1 82.8 70.7 99.3 59.5 99.2 76.2 85.7 71.5 99.8 77.2 97.1 75.0 82.7 64.6 98.0 82.3
0.85 73.1 92.9 74.7 83.0 68.9 99.3 56.4 99.2 75.7 85.8 69.8 99.8 76.8 97.0 74.9 82.8 62.3 98.1 81.7
0.90 73.0 92.8 74.2 83.6 66.6 99.3 53.3 99.3 75.5 86.2 67.6 99.8 76.2 97.0 74.6 82.7 59.8 98.0 81.1
0.95 72.6 92.8 73.5 83.6 64.3 99.2 50.0 99.3 75.2 86.4 65.4 99.8 75.1 97.0 74.3 82.6 57.4 98.0 80.4
1.00 72.4 92.8 72.9 83.7 62.0 99.2 46.5 99.3 74.8 86.4 63.4 99.8 74.1 96.9 73.7 82.4 54.6 98.0 79.6

Table 8: Patching on a single new task where CIFAR100 is the supported task. S: accuracy on
the supported task (CIFAR100); P: accuracy on the patching task; Avg: average accuracy on patching
and supported tasks.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN
α S P S P S P S P S P S P S P S P S P Avg

B/32

0.00 84.0 59.6 84.0 44.1 84.0 45.9 84.0 32.4 84.0 22.6 84.0 48.3 84.0 60.7 84.0 63.1 84.0 31.5 64.7
0.05 84.0 61.9 84.0 47.0 83.9 63.4 84.0 39.7 83.9 25.5 84.0 60.9 84.0 65.9 84.0 64.4 83.9 39.9 68.0
0.10 83.9 63.8 83.9 50.1 83.9 74.3 83.9 48.1 83.9 35.7 83.9 77.0 83.9 71.0 84.0 65.9 83.9 50.1 71.7
0.15 83.9 65.5 83.7 53.7 83.6 82.0 83.8 57.6 83.8 47.5 83.7 87.3 83.9 75.9 84.0 67.2 83.8 60.9 75.1
0.20 83.9 67.4 83.5 56.5 83.3 89.3 83.6 68.3 83.7 55.6 83.3 92.6 83.7 79.9 84.0 68.5 83.6 70.4 77.8
0.25 83.9 69.1 83.3 59.7 82.7 93.3 83.3 78.5 83.6 60.2 82.9 95.7 83.5 83.7 84.0 69.5 83.1 78.3 79.9
0.30 83.8 70.7 83.0 62.8 82.1 95.4 82.8 85.9 83.4 66.1 82.4 97.3 83.2 86.6 83.9 70.5 82.7 84.3 81.5
0.35 83.7 72.4 82.5 65.7 81.3 96.4 82.1 90.9 83.1 69.3 81.8 98.5 82.8 89.1 83.7 71.6 82.1 88.8 82.6
0.40 83.6 73.6 82.1 68.1 80.4 97.0 81.3 93.9 83.0 72.3 81.1 99.0 82.5 91.0 83.6 72.5 81.3 92.0 83.2
0.45 83.5 74.8 81.6 70.1 79.5 97.6 80.6 95.7 82.6 73.4 80.1 99.3 81.9 92.4 83.4 73.4 80.2 94.0 83.6
0.50 83.3 75.8 81.0 72.3 78.5 97.9 79.5 96.8 82.2 75.1 78.9 99.4 81.4 93.3 83.1 74.2 79.2 95.2 83.7
0.55 83.0 76.4 80.2 74.2 77.2 98.1 78.0 97.5 81.7 76.9 77.5 99.5 80.7 93.7 82.9 74.7 77.6 96.1 83.7
0.60 82.8 77.3 79.3 75.3 75.8 98.2 76.3 97.8 81.2 78.1 75.7 99.6 79.9 94.3 82.5 75.2 75.9 96.5 83.4
0.65 82.4 78.0 78.4 76.2 74.2 98.4 74.4 98.1 80.6 79.2 73.2 99.6 79.0 94.7 82.0 75.6 73.9 96.7 83.0
0.70 82.1 78.4 77.3 76.8 72.4 98.5 71.9 98.2 79.8 79.5 70.6 99.6 77.9 94.9 81.6 75.9 71.4 96.9 82.4
0.75 81.8 78.9 76.0 77.7 70.6 98.6 68.8 98.4 78.9 79.5 67.5 99.6 76.7 95.1 81.1 76.1 68.6 97.0 81.7
0.80 81.3 79.1 74.7 78.3 68.4 98.5 64.7 98.6 78.0 80.2 63.7 99.6 75.3 95.1 80.4 76.1 65.2 97.1 80.8
0.85 80.8 79.6 73.2 78.6 66.1 98.5 59.7 98.6 76.9 79.2 59.3 99.6 73.7 95.0 79.8 76.0 61.3 97.1 79.6
0.90 80.3 79.5 71.4 78.7 63.4 98.5 54.3 98.6 75.6 78.9 54.0 99.6 71.7 95.0 79.0 75.8 56.7 97.2 78.2
0.95 79.7 79.4 69.2 78.9 60.3 98.5 48.2 98.5 74.2 78.2 47.9 99.6 69.5 95.1 78.0 75.4 51.6 97.2 76.6
1.00 79.0 79.2 67.0 78.7 57.2 98.6 41.7 98.5 72.6 77.9 41.9 99.6 67.3 95.0 77.0 75.1 46.4 97.2 75.0

B/16

0.00 88.8 64.7 88.8 45.0 88.8 53.9 88.9 43.4 88.9 30.5 88.9 51.3 88.8 65.8 88.9 65.5 88.9 52.0 70.7
0.05 88.8 66.9 88.8 47.4 88.7 66.8 88.8 49.0 88.8 40.5 88.8 64.4 88.8 71.2 88.9 66.9 88.9 60.6 74.1
0.10 88.8 68.9 88.8 49.7 88.6 80.0 88.8 55.3 88.8 53.9 88.7 83.0 88.7 75.9 88.9 68.4 88.9 67.8 77.9
0.15 88.8 71.1 88.7 53.0 88.5 89.5 88.6 62.8 88.7 58.5 88.5 92.1 88.7 80.0 88.9 69.7 88.8 74.5 80.5
0.20 88.8 73.3 88.6 56.5 88.2 94.1 88.5 71.1 88.6 59.8 88.3 95.8 88.5 84.1 88.9 71.0 88.7 80.4 82.4
0.25 88.7 75.4 88.4 59.5 88.0 96.1 88.3 80.5 88.5 62.2 88.1 97.6 88.3 87.4 88.8 72.3 88.6 85.6 84.0
0.30 88.7 77.2 88.3 63.6 87.6 97.1 88.1 88.0 88.3 68.4 87.8 98.4 88.1 90.3 88.8 73.4 88.3 89.8 85.6
0.35 88.5 79.1 88.0 67.0 87.3 97.6 87.8 92.7 88.1 72.3 87.6 99.0 88.0 92.1 88.7 74.5 88.1 92.9 86.6
0.40 88.3 80.9 87.9 70.4 86.8 98.0 87.6 95.5 88.0 74.0 87.2 99.3 87.8 93.5 88.5 75.4 87.8 94.9 87.3
0.45 88.2 82.0 87.6 73.5 86.3 98.3 87.1 96.9 87.8 75.9 86.7 99.4 87.5 94.5 88.3 76.2 87.4 96.1 87.8
0.50 87.9 83.5 87.3 76.1 85.8 98.6 86.6 97.6 87.6 78.3 86.1 99.4 87.3 95.0 88.1 77.0 86.9 96.7 88.1
0.55 87.7 84.5 87.0 77.6 85.1 98.7 86.0 98.1 87.3 79.5 85.5 99.5 86.9 95.5 88.0 77.7 86.3 97.2 88.2
0.60 87.6 85.2 86.6 79.4 84.4 98.7 85.2 98.4 87.1 81.4 84.6 99.6 86.4 95.8 87.7 78.2 85.5 97.4 88.3
0.65 87.3 85.9 86.1 80.6 83.4 98.9 84.1 98.7 86.8 82.6 83.7 99.6 85.8 96.0 87.4 78.4 84.6 97.6 88.2
0.70 87.0 86.3 85.5 81.1 82.3 99.0 82.6 98.7 86.5 83.8 82.7 99.7 85.2 96.2 87.1 78.7 83.4 97.6 88.0
0.75 86.6 86.8 84.9 81.3 81.2 99.0 80.7 98.8 86.0 84.2 81.2 99.7 84.5 96.3 86.7 78.9 82.0 97.7 87.6
0.80 86.3 87.0 84.1 82.4 79.8 99.0 78.1 98.9 85.5 84.7 79.5 99.7 83.6 96.4 86.3 79.1 80.5 97.7 87.1
0.85 85.8 87.2 83.0 82.3 78.3 99.0 75.2 98.9 84.8 84.7 77.4 99.7 82.6 96.4 85.8 79.2 78.3 97.7 86.5
0.90 85.3 87.2 82.0 82.3 76.5 99.1 71.1 98.9 84.3 84.8 74.6 99.7 81.6 96.4 85.2 79.3 75.8 97.7 85.7
0.95 84.9 87.2 80.7 82.2 74.5 99.1 66.8 99.0 83.5 84.7 71.4 99.7 80.5 96.4 84.5 79.2 72.9 97.7 84.7
1.00 84.3 87.0 79.4 82.3 72.4 99.1 61.3 99.0 82.6 84.8 67.4 99.7 79.4 96.4 83.7 79.0 69.0 97.7 83.6

L/14

0.00 93.1 77.8 93.1 55.4 93.1 60.2 93.1 50.6 93.1 25.9 93.1 76.4 93.1 71.0 93.1 68.3 93.1 58.6 76.8
0.05 93.1 79.9 93.1 57.8 93.1 74.6 93.0 57.9 93.0 33.2 93.0 88.3 93.1 76.5 93.1 69.7 93.1 67.0 80.1
0.10 93.1 82.1 93.1 60.6 93.0 88.1 93.0 65.6 93.0 47.0 93.0 94.5 93.1 81.1 93.1 71.3 93.1 73.2 83.4
0.15 93.1 84.0 93.0 63.8 93.0 93.9 93.0 74.8 93.0 54.3 93.0 97.4 93.1 85.8 93.1 72.9 93.0 78.9 85.7
0.20 93.1 85.8 93.0 66.8 92.9 96.6 93.0 83.3 92.9 60.1 93.0 98.6 93.0 89.3 93.1 74.3 93.0 84.1 87.5
0.25 93.0 87.5 93.0 69.5 92.8 97.7 92.9 89.6 92.9 65.8 92.9 99.2 93.0 92.1 93.0 75.5 92.9 88.7 89.0
0.30 93.0 88.5 92.9 71.9 92.7 98.1 92.8 93.6 92.8 70.6 92.8 99.4 92.9 93.5 93.0 76.8 92.8 92.5 90.0
0.35 92.9 89.7 92.8 73.8 92.6 98.4 92.8 95.7 92.8 73.0 92.7 99.5 92.9 94.7 93.1 77.9 92.7 94.9 90.7
0.40 92.8 90.4 92.7 75.7 92.4 98.6 92.8 97.0 92.8 75.8 92.6 99.6 92.9 95.5 93.1 78.9 92.6 96.3 91.2
0.45 92.7 91.0 92.6 78.0 92.2 98.8 92.6 97.8 92.7 77.5 92.5 99.7 92.7 95.9 93.0 79.8 92.5 97.1 91.6
0.50 92.7 91.6 92.5 79.1 92.0 98.9 92.6 98.4 92.6 80.6 92.4 99.8 92.6 96.2 93.0 80.6 92.4 97.5 92.0
0.55 92.6 92.1 92.3 80.3 91.8 98.9 92.5 98.7 92.5 82.8 92.2 99.8 92.5 96.6 92.9 81.3 92.2 97.7 92.2
0.60 92.6 92.4 92.2 81.2 91.5 99.0 92.3 98.9 92.5 84.0 92.1 99.8 92.3 96.8 92.8 81.8 92.1 97.9 92.3
0.65 92.5 92.6 92.0 82.1 91.2 99.1 92.2 99.0 92.4 84.7 91.9 99.8 92.1 96.9 92.7 82.1 92.0 97.9 92.4
0.70 92.4 92.8 91.8 82.3 90.8 99.1 92.0 99.1 92.3 85.4 91.7 99.8 92.0 97.0 92.7 82.4 91.7 98.0 92.4
0.75 92.3 92.8 91.6 82.7 90.4 99.2 91.8 99.2 92.2 85.7 91.5 99.8 91.8 97.1 92.5 82.6 91.5 98.0 92.4
0.80 92.1 92.9 91.4 82.8 89.9 99.3 91.5 99.2 92.0 85.7 91.2 99.8 91.5 97.1 92.5 82.7 91.2 98.0 92.3
0.85 91.9 92.9 91.0 83.0 89.3 99.3 91.2 99.2 91.9 85.8 90.8 99.8 91.2 97.0 92.2 82.8 90.9 98.1 92.1
0.90 91.6 92.8 90.7 83.6 88.7 99.3 90.8 99.3 91.8 86.2 90.4 99.8 91.0 97.0 92.1 82.7 90.6 98.0 92.0
0.95 91.5 92.8 90.3 83.6 87.9 99.2 90.4 99.3 91.7 86.4 89.9 99.8 90.6 97.0 91.8 82.6 90.2 98.0 91.8
1.00 91.2 92.8 89.8 83.7 86.9 99.2 89.8 99.3 91.5 86.4 89.5 99.8 90.2 96.9 91.5 82.4 89.6 98.0 91.6

Table 9: Patching on a single new task where Food101 is the supported task. S: accuracy on the
supported task (Food101); P: accuracy on the patching task; Avg: average accuracy on patching and
supported tasks.
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Cars DTD EuroSAT GTSRB KITTI MNIST RESISC45 SUN397 SVHN
α S P S P S P S P S P S P S P S P S P Avg

B/32

0.00 97.1 59.6 97.1 44.1 97.1 45.9 97.1 32.4 97.1 22.6 97.1 48.3 97.1 60.7 97.1 63.1 97.1 31.5 71.3
0.05 97.2 61.9 97.2 47.0 97.0 63.4 97.2 39.7 97.1 25.5 97.2 60.9 97.2 65.9 97.2 64.4 97.2 39.9 74.6
0.10 97.1 63.8 97.2 50.1 97.0 74.3 97.2 48.1 97.1 35.7 97.2 77.0 97.2 71.0 97.2 65.9 97.1 50.1 78.3
0.15 97.1 65.5 97.2 53.7 96.9 82.0 97.2 57.6 97.1 47.5 97.1 87.3 97.1 75.9 97.2 67.2 97.1 60.9 81.8
0.20 97.1 67.4 97.1 56.5 96.5 89.3 97.1 68.3 97.0 55.6 96.9 92.6 97.1 79.9 97.1 68.5 97.1 70.4 84.5
0.25 97.1 69.1 97.1 59.7 96.4 93.3 97.0 78.5 97.0 60.2 96.8 95.7 97.1 83.7 97.1 69.5 96.9 78.3 86.7
0.30 97.0 70.7 97.0 62.8 96.2 95.4 96.9 85.9 96.9 66.1 96.7 97.3 97.0 86.6 97.0 70.5 96.8 84.3 88.4
0.35 97.0 72.4 97.0 65.7 95.9 96.4 96.7 90.9 96.8 69.3 96.5 98.5 97.0 89.1 97.0 71.6 96.7 88.8 89.6
0.40 97.0 73.6 96.9 68.1 95.7 97.0 96.4 93.9 96.8 72.3 96.2 99.0 96.9 91.0 96.9 72.5 96.4 92.0 90.5
0.45 96.9 74.8 96.8 70.1 95.4 97.6 96.2 95.7 96.5 73.4 96.0 99.3 96.8 92.4 96.9 73.4 96.3 94.0 91.0
0.50 96.6 75.8 96.8 72.3 95.0 97.9 95.8 96.8 96.3 75.1 95.5 99.4 96.6 93.3 96.8 74.2 96.1 95.2 91.4
0.55 96.3 76.4 96.6 74.2 94.5 98.1 95.3 97.5 96.2 76.9 95.2 99.5 96.4 93.7 96.7 74.7 95.7 96.1 91.7
0.60 96.0 77.3 96.4 75.3 94.1 98.2 94.6 97.8 96.0 78.1 94.7 99.6 96.2 94.3 96.7 75.2 95.3 96.5 91.8
0.65 95.8 78.0 96.2 76.2 93.6 98.4 93.8 98.1 95.7 79.2 94.2 99.6 96.0 94.7 96.5 75.6 94.5 96.7 91.8
0.70 95.4 78.4 96.2 76.8 92.7 98.5 92.7 98.2 95.3 79.5 93.4 99.6 95.8 94.9 96.4 75.9 93.6 96.9 91.7
0.75 95.0 78.9 96.0 77.7 91.7 98.6 91.5 98.4 95.0 79.5 92.6 99.6 95.3 95.1 96.2 76.1 92.8 97.0 91.5
0.80 94.5 79.1 95.8 78.3 90.8 98.5 90.1 98.6 94.8 80.2 91.6 99.6 94.9 95.1 96.2 76.1 91.7 97.1 91.3
0.85 93.6 79.6 95.4 78.6 89.9 98.5 88.3 98.6 94.3 79.2 90.4 99.6 94.5 95.0 96.0 76.0 90.5 97.1 90.8
0.90 92.6 79.5 95.0 78.7 88.6 98.5 86.2 98.6 93.6 78.9 89.1 99.6 93.9 95.0 95.8 75.8 88.9 97.2 90.3
0.95 91.4 79.4 94.5 78.9 87.3 98.5 83.6 98.5 92.9 78.2 87.3 99.6 93.1 95.1 95.6 75.4 87.0 97.2 89.6
1.00 90.2 79.2 94.2 78.7 86.2 98.6 80.4 98.5 91.9 77.9 84.6 99.6 92.5 95.0 95.3 75.1 84.8 97.2 88.9

B/16

0.00 98.2 64.7 98.2 45.0 98.2 53.9 98.2 43.4 98.2 30.5 98.2 51.3 98.2 65.8 98.2 65.5 98.2 52.0 75.4
0.05 98.3 66.9 98.3 47.4 98.2 66.8 98.2 49.0 98.3 40.5 98.2 64.4 98.3 71.2 98.2 66.9 98.3 60.6 78.8
0.10 98.2 68.9 98.3 49.7 98.2 80.0 98.3 55.3 98.2 53.9 98.2 83.0 98.3 75.9 98.2 68.4 98.2 67.8 82.6
0.15 98.2 71.1 98.3 53.0 98.2 89.5 98.2 62.8 98.2 58.5 98.1 92.1 98.2 80.0 98.3 69.7 98.2 74.5 85.3
0.20 98.2 73.3 98.2 56.5 98.1 94.1 98.1 71.1 98.2 59.8 98.1 95.8 98.2 84.1 98.3 71.0 98.2 80.4 87.2
0.25 98.1 75.4 98.2 59.5 98.1 96.1 98.1 80.5 98.2 62.2 98.0 97.6 98.2 87.4 98.2 72.3 98.1 85.6 88.9
0.30 98.1 77.2 98.2 63.6 98.0 97.1 97.9 88.0 98.1 68.4 97.8 98.4 98.2 90.3 98.1 73.4 97.9 89.8 90.5
0.35 98.0 79.1 98.2 67.0 97.9 97.6 97.8 92.7 98.0 72.3 97.7 99.0 98.1 92.1 98.1 74.5 97.7 92.9 91.6
0.40 97.9 80.9 98.1 70.4 97.8 98.0 97.6 95.5 97.9 74.0 97.5 99.3 98.1 93.5 98.1 75.4 97.6 94.9 92.4
0.45 97.8 82.0 98.0 73.5 97.7 98.3 97.4 96.9 97.9 75.9 97.3 99.4 98.0 94.5 98.0 76.2 97.5 96.1 92.9
0.50 97.7 83.5 98.0 76.1 97.5 98.6 97.2 97.6 97.8 78.3 97.1 99.4 98.0 95.0 98.0 77.0 97.4 96.7 93.4
0.55 97.5 84.5 98.0 77.6 97.3 98.7 97.0 98.1 97.8 79.5 96.9 99.5 97.9 95.5 97.9 77.7 97.2 97.2 93.6
0.60 97.3 85.2 98.0 79.4 96.8 98.7 96.5 98.4 97.6 81.4 96.5 99.6 97.8 95.8 97.8 78.2 96.7 97.4 93.8
0.65 96.8 85.9 98.0 80.6 96.4 98.9 96.0 98.7 97.5 82.6 96.0 99.6 97.7 96.0 97.7 78.4 96.4 97.6 93.9
0.70 96.2 86.3 98.0 81.1 96.0 99.0 95.5 98.7 97.3 83.8 95.6 99.7 97.6 96.2 97.6 78.7 96.0 97.6 93.9
0.75 95.4 86.8 97.9 81.3 95.2 99.0 94.7 98.8 97.1 84.2 94.8 99.7 97.5 96.3 97.5 78.9 95.3 97.7 93.8
0.80 94.2 87.0 97.9 82.4 94.4 99.0 93.7 98.9 96.9 84.7 94.1 99.7 97.3 96.4 97.3 79.1 94.6 97.7 93.6
0.85 93.1 87.2 97.7 82.3 93.4 99.0 92.4 98.9 96.6 84.7 93.0 99.7 97.1 96.4 97.2 79.2 93.5 97.7 93.3
0.90 92.0 87.2 97.7 82.3 92.5 99.1 90.9 98.9 96.3 84.8 91.9 99.7 96.9 96.4 96.9 79.3 92.5 97.7 92.9
0.95 90.8 87.2 97.5 82.2 91.2 99.1 88.9 99.0 95.9 84.7 90.6 99.7 96.7 96.4 96.7 79.2 91.5 97.7 92.5
1.00 89.9 87.0 97.3 82.3 89.5 99.1 86.8 99.0 95.4 84.8 89.0 99.7 96.5 96.4 96.4 79.0 90.1 97.7 92.0

L/14

0.00 99.4 77.8 99.4 55.4 99.4 60.2 99.4 50.6 99.4 25.9 99.4 76.4 99.4 71.0 99.4 68.3 99.4 58.6 79.9
0.05 99.4 79.9 99.4 57.8 99.4 74.6 99.4 57.9 99.4 33.2 99.4 88.3 99.4 76.5 99.4 69.7 99.4 67.0 83.3
0.10 99.4 82.1 99.4 60.6 99.4 88.1 99.4 65.6 99.4 47.0 99.4 94.5 99.4 81.1 99.4 71.3 99.4 73.2 86.6
0.15 99.4 84.0 99.4 63.8 99.3 93.9 99.4 74.8 99.4 54.3 99.4 97.4 99.3 85.8 99.4 72.9 99.3 78.9 88.9
0.20 99.4 85.8 99.4 66.8 99.2 96.6 99.4 83.3 99.4 60.1 99.4 98.6 99.4 89.3 99.3 74.3 99.3 84.1 90.7
0.25 99.4 87.5 99.3 69.5 99.2 97.7 99.4 89.6 99.4 65.8 99.4 99.2 99.4 92.1 99.3 75.5 99.3 88.7 92.2
0.30 99.3 88.5 99.3 71.9 99.2 98.1 99.3 93.6 99.4 70.6 99.3 99.4 99.4 93.5 99.3 76.8 99.2 92.5 93.3
0.35 99.3 89.7 99.3 73.8 99.2 98.4 99.2 95.7 99.4 73.0 99.3 99.5 99.3 94.7 99.3 77.9 99.2 94.9 94.0
0.40 99.2 90.4 99.3 75.7 99.1 98.6 99.2 97.0 99.4 75.8 99.2 99.6 99.3 95.5 99.4 78.9 99.2 96.3 94.5
0.45 99.2 91.0 99.2 78.0 99.0 98.8 99.2 97.8 99.3 77.5 99.2 99.7 99.3 95.9 99.3 79.8 99.1 97.1 94.9
0.50 99.1 91.6 99.2 79.1 99.0 98.9 99.2 98.4 99.3 80.6 99.1 99.8 99.2 96.2 99.4 80.6 99.0 97.5 95.3
0.55 99.1 92.1 99.2 80.3 98.9 98.9 99.1 98.7 99.3 82.8 99.1 99.8 99.2 96.6 99.3 81.3 98.9 97.7 95.6
0.60 99.0 92.4 99.2 81.2 98.8 99.0 99.1 98.9 99.3 84.0 99.0 99.8 99.2 96.8 99.3 81.8 98.9 97.9 95.7
0.65 98.9 92.6 99.1 82.1 98.7 99.1 99.0 99.0 99.2 84.7 99.0 99.8 99.1 96.9 99.3 82.1 98.8 97.9 95.8
0.70 98.8 92.8 99.1 82.3 98.6 99.1 99.0 99.1 99.2 85.4 98.9 99.8 99.1 97.0 99.3 82.4 98.7 98.0 95.9
0.75 98.6 92.8 99.0 82.7 98.5 99.2 98.8 99.2 99.2 85.7 98.8 99.8 99.1 97.1 99.2 82.6 98.6 98.0 95.9
0.80 98.3 92.9 99.0 82.8 98.3 99.3 98.6 99.2 99.1 85.7 98.7 99.8 99.1 97.1 99.2 82.7 98.4 98.0 95.9
0.85 98.0 92.9 99.0 83.0 98.1 99.3 98.5 99.2 99.0 85.8 98.5 99.8 99.0 97.0 99.2 82.8 98.2 98.1 95.8
0.90 97.5 92.8 98.9 83.6 97.9 99.3 98.2 99.3 99.0 86.2 98.4 99.8 99.0 97.0 99.2 82.7 97.9 98.0 95.8
0.95 96.9 92.8 98.8 83.6 97.5 99.2 97.9 99.3 98.9 86.4 98.3 99.8 98.9 97.0 99.1 82.6 97.5 98.0 95.7
1.00 95.9 92.8 98.8 83.7 97.2 99.2 97.4 99.3 98.8 86.4 98.1 99.8 98.8 96.9 99.1 82.4 97.2 98.0 95.5

Table 10: Patching on a single new task where STL10 is the supported task. S: accuracy on the
supported task (STL10); P: accuracy on the patching task; Avg: average accuracy on patching and
supported tasks.
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B/32

Unpatched 63.4 59.6 44.1 45.9 32.4 22.6 48.7 60.7 63.1 31.5 54.4
Parallel patching 60.1 63.4 50.2 75.6 58.3 42.1 90.8 71.7 64.8 66.7 62.5
Seq. patching (seed 0) 55.0 67.4 65.0 86.3 83.5 63.3 96.6 77.1 68.0 75.7 65.4
Seq. patching (seed 1) 55.0 60.1 60.9 86.5 82.5 58.1 98.0 85.9 67.2 87.0 65.6
Seq. patching (seed 2) 56.3 61.1 58.8 85.4 87.1 57.0 96.9 84.7 69.5 88.5 66.4
Joint patching 61.5 75.2 76.0 98.0 96.9 76.2 99.2 92.6 72.6 94.2 74.1
Multiple models 63.4 79.2 78.7 98.6 98.5 77.9 99.6 95.0 75.1 97.2 76.1

B/16

Unpatched 68.3 64.6 44.9 53.9 43.3 30.5 51.6 65.8 65.5 52.0 60.4
Parallel patching 67.0 68.9 51.1 81.3 65.7 48.0 96.2 74.4 68.6 75.9 68.5
Seq. patching (seed 0) 61.6 70.2 61.8 95.0 86.4 64.1 97.8 83.9 73.4 86.2 70.7
Seq. patching (seed 1) 62.7 73.8 64.9 88.4 87.6 59.6 98.5 89.0 72.4 82.0 71.1
Seq. patching (seed 2) 64.4 70.9 59.4 83.1 91.3 64.4 97.5 87.4 70.9 87.4 71.8
Joint patching 67.1 82.7 79.5 98.3 97.7 80.5 99.2 94.2 75.9 95.7 78.2
Multiple models 68.3 87.0 82.3 99.1 99.0 84.8 99.7 96.4 79.0 97.7 80.0

L/14

Unpatched 75.5 77.8 55.4 60.3 50.6 26.0 76.4 71.0 68.3 58.6 68.0
Parallel patching 75.1 83.1 63.7 94.0 82.1 49.6 98.4 85.8 73.4 83.4 77.2
Seq. patching (seed 0) 73.3 85.5 75.4 95.5 91.8 71.2 98.6 90.8 80.0 93.6 80.1
Seq. patching (seed 1) 73.1 87.7 73.6 95.3 93.5 67.4 98.7 94.3 78.8 95.1 80.1
Seq. patching (seed 2) 73.5 88.3 76.5 94.6 96.2 75.4 98.7 93.7 78.4 92.0 80.9
Joint patching 75.2 92.1 83.6 98.7 98.9 85.1 99.7 96.3 80.9 97.3 83.8
Multiple models 75.5 92.8 83.7 99.2 99.3 86.4 99.8 96.9 82.4 98.0 84.4

Table 11: Contrasting strategies for patching on multiple tasks. ImageNet is used as the supported
task while the other nine datasets are used for patching.
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