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Typical image classification models are closed-vocabulary
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Background: open-vocabulary models
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Background: open-vocabulary models
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Why are open-vocabulary models interesting?

A single model with high accuracy on many tasks

ImageNet: 85.7%

CIFAR-10: 97.5%

CIFAR-100: 82.3%

Flowers: 91.2%

Caltech-101: 94.7%

Pham et al., 2022



Why are open-vocabulary models interesting?
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Why are open-vocabulary models interesting?

Tasks with high accuracy define a set that is supported by the API

ImageNet: 85.7%

CIFAR-10: 97.5%

CIFAR-100: 82.3%

Flowers: 91.2%

Caltech-101: 94.7%

supported tasks

Pham et al., 2022



The limitations of open-vocabulary models

As any system, the set of supported capabilities is not exhaustive.

MNIST: 40.3% ImageNet: 85.7% PCam: 59.6%
CIFAR-10: 97.5%

- 0
EUroSAL: 51.0% 1 51FAR-100: 82.3% DTD: 64.6%

Flowers: 91.2%
RESISCA45: 72.7%

Caltech-101: 94.7%

supported tasks out-of-scope

Pham et al., 2022 A




What can we do?

Option 1: Re-train the model, adding data from the underperfoming tasks

- pro: keeps the model open-vocabulary
- pro: this might improve accuracy on other tasks
- con: this can be very expensive, and unreasonable to do multiple times

y.



What can we do?

Option 1: Re-train the model, adding data from the underperfoming tasks

- pro: keeps the model open-vocabulary
- pro: this might improve accuracy on other tasks
- con: this can be very expensive, and unreasonable to do multiple times

Option 2: Fine-tune on data from the underperforming tasks
- pro: fast

- con: prone to overfitting and catastrophic forgetting
- con: typically makes models closed-vocabulary again

y.



Patching

The goal of patching is to
expand the set of supported
tasks, without changing the D E— —_—
model API




Building models like open-source software
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Building models like open-source software

this should be fast,
effective and have
no side effects




Patching by interpolating weights
Our work: A simple, two-step method for patching models:

Step 1: fine-tune on a target task, without introducing new parameters

Step 2: average the weights of the models before and after fine-tuning

y.



Patching by interpolating weights
Our work: A simple, two-step method for patching models:

Step 1: fine-tune on a target task, without introducing new parameters
Step 2: average the weights of the models before and after fine-tuning
- pro: as fast as fine-tuning

- pro: models remain open-vocabulary
- pro: less catastrophic forgetting

y.



The rest of this talk

1) Patching on a single task
2) Patching on multiple tasks
3) Task generalization

4) Case studies
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Patching on a single task

Patching on MNIST
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Patching on a single task

MNIST accuracy

Patching on MNIST
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Patching on a single task

Patching on MNIST

l01 @ ®© @ ® ® @ X( 8 4
90

g 0.9 - i =
S 0.8 with weight
O ® u interpolations, we are
,r_D 0.7 - close to the point of no
A tradeoff
< 0.6- ®
=

0.5 - é

0.5 0.6 0.7

ImageNet accuracy

e VIT-B/32 ViT-B/16 ViT-L/14




Patching on a single task

Patching on Cars
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Patching on a single task

Patching on Cars Patching on DTD Patching on EuroSAT
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Scale makes patching better

Accuracy distance to optimal
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Scale makes patching better

At scale, models need to change less to fit new data

Average weight distance

p Centered Kernel Alignment from zero-shot to fine-tuned
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Patching on multiple tasks

Three strategies:

e Parallel:

® Fine-tune on each task, then find linear interpolations of all models
e Sequential:

e Patch sequentially, one task at a time
e Joint;:

® Merge all tasks together into a larger one, then patch




Patching on multiple tasks

joint patching is
within 0.5% of using

10 different
specialized models!

Accuracies for ViT-B/32 Accuracies for ViT-B/16 Accuracies for ViT-L/14

ImageNet ImageNet ImageNet

SUN397 DTD SUN397

DTD DTD

EuroSAT RESISC45 EuroSAT © RESISC45 EuroSAT 9/ RESISCA45

GTSRB —  _— MNIST

KITTI

KITTI

Multiple independently fine-tuned models === Sequential patching === Unpatched model
- JOint patching - Parallel patching




Task generalization




Task generalization

Because the model remains open-vocabulary, cool things can happen!

E.g., generalizing to unseen classes

Accuracy gains on *unseen* classes
20

15

10

Accuracy gain




Task generalization

Or similar tasks, even when the space of classes change

Accuracy gain on a related task
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Case studies




Case study: typographic attacks
Granny Smith  85.6%

iIPod 0.4%
library 0.0%
pizza 0.0%
toaster 0.0%
dough 0.1%
Granny Smith 0.1%
Pod  997%
library 0.0%
pizza 0.0%
- toaster 0.0%
dough 0.0%

Goh et al., 2022




Case study: typographic attacks

(a) Real-world (b) SUN397 synthetic
typographic attack typographic attack

Goh et al., 2022




Case study: typographic attacks

(a) Real-world (b) SUN397 synthetic (c) Acc. on real-world (d) Acc. on SUN397 synthetic
typographic attack typographic attack typographic attacks typographic attacks
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Case study: counting

Goh et al., 2022



Case study: counting
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Case study: counting

40 percentage points
Improvement on real

(a) Acc.on 3, 7 and 10 world with less than

(b) Acc.on 4,5, 6, 8and 9
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Case study: VQA




Case study: VQA

Q: Where is the kid pointing?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) park (I) up (m) floor mat  (n) so people don't get wet

(o) down (p) mom (q) pharos (r) ketchup pickle relish mustard

Q: How many people are in the picture on side of refrigerator?

(a) yes (b) no

(c) 1 (d) 2 (e) 3 (f) 4

(g) white (h) red (i) blue (j) green

(k) 108 mph  (I) banana, apple (m) 7 (n) 10 many

(o) fruit salad (p) full swing (q) 5 (r) vattenfall strom fur gewinner

Goyal et al., 2016




Case study: VQA

Patching on VQA
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Takeaway

Patching allows expanding the tasks where an open-vocabulary model
achieves high accuracy, without adding new parameters, without the need
to re-train and without catastrophic forgetting

y.






