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Typical image classification models are closed-vocabulary
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Typical image classification models are closed-vocabulary
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encoder

cat (p=0.8)
dog (p=0.1)
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encoder
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A single model with high accuracy on many tasks

Pham et al., 2022

ImageNet: 85.7%

CIFAR-10: 97.5%

CIFAR-100: 82.3%

Flowers: 91.2%

Caltech-101: 94.7%



Why are open-vocabulary models interesting?
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Open-vocabulary models as APIs

images, options

answers



Why are open-vocabulary models interesting?
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Tasks with high accuracy define a set that is supported by the API

Pham et al., 2022

ImageNet: 85.7%

CIFAR-10: 97.5%

CIFAR-100: 82.3%

Flowers: 91.2%

Caltech-101: 94.7%

supported tasks



The limitations of open-vocabulary models
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As any system, the set of supported capabilities is not exhaustive.

Pham et al., 2022

ImageNet: 85.7%

CIFAR-10: 97.5%

CIFAR-100: 82.3%

Flowers: 91.2%

Caltech-101: 94.7%

supported tasks

MNIST: 40.3%

EuroSAT: 51.0%

RESISC45: 72.7%

PCam: 59.6%

DTD: 64.6%

out-of-scope



What can we do?
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Option 1: Re-train the model, adding data from the underperfoming tasks


    -   pro: keeps the model open-vocabulary  
    -   pro: this might improve accuracy on other tasks

    -   con: this can be very expensive, and unreasonable to do multiple times




What can we do?
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Option 1: Re-train the model, adding data from the underperfoming tasks


    -   pro: keeps the model open-vocabulary  
    -   pro: this might improve accuracy on other tasks

    -   con: this can be very expensive, and unreasonable to do multiple times


Option 2: Fine-tune on data from the underperforming tasks


    -   pro: fast

    -   con: prone to overfitting and catastrophic forgetting

    -   con: typically makes models closed-vocabulary again




Patching
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The goal of patching is to 
expand the set of supported 
tasks, without changing the 

model API




Building models like open-source software

￼16A Call to Build Models Like We Build Open-Source Software, Raffel 2021 
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Building models like open-source software
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this should be fast, 
effective and have 

no side effects



Patching by interpolating weights
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Our work: A simple, two-step method for patching models:


       Step 1: fine-tune on a target task, without introducing new parameters


	   Step 2: average the weights of the models before and after fine-tuning
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Our work: A simple, two-step method for patching models:


       Step 1: fine-tune on a target task, without introducing new parameters


	   Step 2: average the weights of the models before and after fine-tuning


     -   pro: as fast as fine-tuning

     -   pro: models remain open-vocabulary

     -   pro: less catastrophic forgetting



The rest of this talk
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1) Patching on a single task


2) Patching on multiple tasks


3) Task generalization


4) Case studies
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supported task



Patching on a single task
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fine-tuning can hurt 
accuracy on the 
supported tasks



Patching on a single task
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with weight 
interpolations, we are 

close to the point of no 
tradeoff
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Patching on a single task
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Patching on a single task

results are 
consistent with 

different supported 
tasks
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Scale makes patching better
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Scale makes patching better
At scale, models need to change less to fit new data
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Patching on multiple tasks
Three strategies:


• Parallel:

• Fine-tune on each task, then find linear interpolations of all models


• Sequential:

• Patch sequentially, one task at a time


• Joint:

• Merge all tasks together into a larger one, then patch




Patching on multiple tasks
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joint patching is 
within 0.5% of using 

10 different 
specialized models!



Task generalization
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Task generalization
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Because the model remains open-vocabulary, cool things can happen!


E.g., generalizing to unseen classes



Task generalization
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Or similar tasks, even when the space of classes change



Case studies
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Case study: typographic attacks
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Case study: counting
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Case study: counting
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Case study: counting
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40 percentage points 
improvement on real 
world with less than 

0.5% drop on ImageNet



Case study: VQA
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Case study: VQA

￼43Goyal et al., 2016



Case study: VQA

￼44

18 percentage 
points improvement 
with less than 1% 
drop on ImageNet



Takeaway
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Takeaway
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Patching allows expanding the tasks where an open-vocabulary model 
achieves high accuracy, without adding new parameters, without the need 

to re-train and without catastrophic forgetting




Thanks!
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