Probing Contextual Language Models for Common Ground with Visual Representations

Gabriel Ilharco

Rowan Zellers

Ali Farhadi

Hannaneh Hajishirzi

NAACL 2021

How do text representations relate to the visual world?

How do text representations relate to the visual world?

a dog is sleeping on the floor

How do text representations relate to the visual world?

a dog is sleeping on the floor

How do text representations relate to the visual world?

a dog is sleeping on the floor

We measure whether contextual **text representations** of concrete **objects** are effective in finding aligned image patches

Context in critical for this investigation

a dog is sleeping on the floor

Context in critical for this investigation

A bat flying in the sky

Overview

Our method uses a lightweight probe that measures how text and visual representations are related a dog is sleeping on the floor

Method - collecting representations

We find aligned representations of concrete objects

a dog is chasing an orange frisbee

Method - collecting representations

We find aligned representations of concrete objects

Method - collecting representations

From image captioning datasets, we find aligned pairs of **instances**using a trained object detector

a dog is chasing an orange frisbee

Method

From image captioning datasets, we find aligned pairs of **instances** using a trained object detector

a dog is chasing an orange frisbee

a dog is chasing an orange frisbee

Method

From image captioning datasets, we find aligned pairs of **instances** using a trained object detector

a dog is chasing an orange frisbee

a dog is chasing an orange frisbee

a dog is chasing an orange **frisbee**

Method - Collecting Data

Text and visual representations are extracted by trained models

Method - Collecting Data

Text and visual representations are extracted by trained models

Method - Inspecting Text Representations

The probe maps text representations to the visual domain.

Method - Inspecting Text Representations

The probe maps text representations to the visual domain.

We compute the **dot product** between **projected representations** and **visual representations**

Method - Inspecting Text Representations

The probe maps text representations to the visual domain.

We compute the **dot product** between **projected representations** and **visual representations**

The **probe** is optimized via a **contrastive loss**, InfoNCE (Oord et al., 2018)

Method - Evaluation

We then evaluate by retrieving image patches of unseen object categories

Probing Contextual Language Models for Common Ground with Visual Representations. Ilharco et. al, 2021

image patches

Method - Evaluation

We then evaluate by retrieving image patches of unseen object categories.

We report two metrics:

- Category Recall at K:
 - o how often an image patch of the correct object category was in the top-K

Method - Evaluation

We then evaluate by retrieving image patches of unseen object categories.

We report two metrics:

• Category Recall at K:

how often an image patch of the correct object category was in the top-K

Instance Recall at K:

how often the correct instance was in the top-K

Results

Language representations provide a strong signal for retrieval

Instance retrieval results on MS-COCO using 1000 test samples spanning 200 unseen object categories

Results

Language representations provide a strong signal for retrieval

Results

Language representations provide a strong signal for retrieval

Category retrieval results on MS-COCO using 1000 test samples spanning 200 unseen object categories

There is a man in the park flying a kite.

A person flying a colorful kite on a beach.

There is a man in the park flying a kite. A person flying a colorful kite on a beach. -> A cat. A black cat. A cat sleeping.

There is a man in the park flying a kite. A person flying a colorful kite on a beach. -> A cat. A black cat. A cat sleeping.

There is a man in the park flying a kite. A person flying a colorful kite on a beach. -> A cat. A black cat. A cat sleeping.

Results - Influence of context

Performance of contextual models quickly degrades as context tokens are progressively masked out

Results - Influence of context

More descriptive sentences lead to better retrieval: performance increases when objects are accompanied by at least one adjective

Results - Grounded Models

Grounded models slightly outperform text-only models

Results - Human Experiments

All models substantially underperform humans

Takeaways

Takeaways

• We introduce a method for measuring similarities between text and visual representations

Takeaways

- We introduce a method for measuring similarities between text and visual representations
- Contextual language representations are useful in finding aligned image patches
 - We explore how results are affected by variables such as context and explicit grounding during training

Takeaways

- We introduce a method for measuring similarities between text and visual representations
- Contextual language representations are useful in finding aligned image patches
 - We explore how results are affected by variables such as context and explicit grounding during training
- All studied models significantly underperform humans, showing much room for future progress

Thank you!

Results - Control

Retrieval results on MS-COCO, with unseen object categories

Results - Seen object categories

Results - Loss ablations

Results - Data ablations

Retrieval results on multiple datasets, with unseen object categories

Results - Data ablations

Results - Influence of context

Results - Influence of context

Results - Grounded Models

Results - Grounded Models

