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Motivation

How do text representations relate to the visual world?
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Motivation

How do text representations relate to the visual world?
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Overview

Our method uses a lightweight probe that measures e il
how text and visual representations are related ' ‘ ‘ |
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Method - collecting representations

We find aligned representations of concrete
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using a trained object detector

a dog is chasing an
orange frisbee



Method

From image captioning datasets, we find aligned pairs of

using a trained object detector

a dog is chasing an a is chasing an
orange frisbee orange frisbee



Method
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Method - Collecting Data

Text and visual representations are extracted by trained models
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Method - Inspecting Text Representations

The maps text representations to the visual domain.
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Method - Inspecting Text Representations

The probe maps text representations to the visual domain.
We compute the dot product between projected representations and visual representations

The probe is optimized via a contrastive loss, INfoNCE (Oord et al., 2018)
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Method - Evaluation

We then evaluate by retrieving image patches of unseen object categories
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Method - Evaluation

We then evaluate by retrieving image patches of unseen object categories.

We report two metrics:

e Category Recall at K:
o how often an image patch of the correct object category was in the top-K
e Instance Recall at K:

o how often the correct instance was in the top-K



Results

Language representations provide a strong signal for retrieval
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Instance retrieval results on
RIS MS-COCO using 1000 test samples
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Probing Contextual Language Models for Common Ground with Visual Representations. llharco et. al, 2021 23



Results

Language representations provide a strong signal for retrieval

82%

Category Recall at 1 (%)

Category retrieval results on
MS-COCO using 1000 test samples
spanning 200 unseen object
categories
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Results - Qualitative Results

There is a man in the park flying a kite.

A person flying a colorful kite on a beach. —> F&
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Results - Qualitative Results
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Results - Qualitative Results

A cat sleeping.




Results - Influence of context

Performance of contextual models quickly degrades as
context tokens are progressively masked out
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Results - Influence of context

More descriptive sentences lead to better retrieval:
performance increases when objects are accompanied by at least one adjective
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Results - Grounded Models

Grounded models slightly outperform text-only models

text-only grounded
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Results - Human Experiments

All models substantially underperform humans
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Takeaways

e We introduce a method for measuring similarities between text and visual representations
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Takeaways

e We introduce a method for measuring similarities between text and visual representations
e Contextual language representations are useful in finding aligned image patches
o  We explore how results are affected by variables such as context and explicit grounding
during training

e All studied models significantly underperform humans, showing much room for future progress
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Retrieval results on MS-COCO, with unseen object categories
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Results - Seen object categories

Retrieval results on MS-COCO, with seen object categories
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Results - Loss ablations

Retrieval results on MS-COCO, with unseen object categories
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Results - Data ablations

Retrieval results on multiple datasets, with unseen object categories

- — 801
© ©
I ©
> .
ki e
o a4
) oAl
Y o
c
© (@]
) (4]
a T 20
5= O
0.
N o
{,,o ooo
OF o
& &
Dataset Dataset

Probing Contextual Language Models for Common Ground with Visual Representations. llharco et. al, 2021 43



Results - Data ablations
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Results - Influence of context
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Results - Influence of context
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Results - Grounded Models

Retrieval results for grounded models, with unseen object categories
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Results - Grounded Models

a is sleeping ‘ ‘

on the floor
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