

Stay on the Path: Instruction Fidelity in Vision-and-Language Navigation

Google Research

Vihan Jain, Gabriel Ilharco, Alexander Ku, Ashish Vaswani, Eugene Ie, Jason Baldridge

Vision-and-Language Navigation (VLN)

- Language
- Perception

- Action
- Planning

Vision-and-Language Navigation (VLN)

Example from Room-to-Room (R2R)¹ dataset

Leave the bedroom, and enter the kitchen. Walk forward, and take a left at the couch. Stop in front of the window.

[1] Anderson et al. Vision-and-language Navigation: Interpreting visually grounded navigation instructions in real environments, CVPR, 2018.

• Data

Make a left down at the narrow hall... Go out the door and wait. Turn around and enter the bedroom... Walk into the doorway and stop

- Data
- Evaluation

- Data
- Evaluation
- Agent training

$R2R \rightarrow R4R$

Make a left down at the narrow hall... Go out the door and wait

Turn around and enter the bedroom... Walk into the doorway and stop

Make a left down at the narrow hall... Go out the door and wait. Turn around and enter the bedroom... Walk into the doorway and stop

R2R-to-R4R code is at https://github.com/googleresearch/google-research/tree/master/r4r

R2R v/s R4R

Mean Path Length

VLN Evaluation: Success Rate (SR)

→ reference path

→ agent path

VLN Evaluation: Success Rate (SR)

success = 1

VLN Evaluation: SPL

Success weighted by Path Length¹

VLN Evaluation: SPL

VLN Evaluation: SED

Success weighted by Edit Distance¹

VLN Evaluation: SED

CLS: New VLN Evaluation Metric

• Coverage weighted by Length Score (CLS): product of Path Coverage (PC) and Length Score (LS)

 $CLS(P,R) = PC(P,R) \cdot LS(P,R)$

R: reference path *P*: agent's predicted path

CLS: New VLN Evaluation Metric

• Path Coverage (PC): average coverage of each node in reference path with respect to the predicted path

reference path
agent's predicted path

CLS: New VLN Evaluation Metric

- Expected optimal path length (EPL) is a function of path coverage
- Length Score (LS): compares path length of predicted path P to EPL

reference path
agent's predicted path P

CLS: Desirable Properties

	Path Similarity Measure	Soft Penalties	Unique Optimum	Scale Invariance	Tractability
CLS	PC measures how well the predicted path covered the nodes of reference path	Both PC and LS are continuous measures	A predicted path achieves the maximum score if and only if it is equal to reference path	Both PC and LS are invariant due to graph invariant constant d_{th}	Computation Time: PC - O(P . R) LS - O(P + R)
	1	1	1	1	1

Training VLN Agents

• Architecture similar to RCM¹ model

[1] Wang et al. Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation CoRR, 2018.

Training VLN Agents

Goal-oriented agents

• encouraged to pursue the goal node only

The immediate reward after taking action a_t at time step t in an episode of length T

$$r(s_t, a_t) = \begin{cases} +\mathbf{ve} \text{ if closer to goal, } -\mathbf{ve} \text{ otherwise} & \text{if } t < T \\ \mathbf{1} \text{ if reached goal, } \mathbf{0} \text{ otherwise} & \text{if } t = T \end{cases}$$

Training VLN Agents

Fidelity-oriented agents

• reach the goal node + **conform to the reference path** *R*

$$r(s_t, a_t) = \begin{cases} 0 & \text{if } t < T\\ (1 \text{ if reached goal, } \mathbf{0} \text{ otherwise }) + CLS(s_{1...T}, R) & \text{if } t = T \end{cases}$$

R2R Performance

- Fidelity-oriented agents perform slightly better on SPL, CLS
- SPL appears consistent with CLS

R2R Performance

- Ablation Studies
 - Agent optimized to reach the goal may incidentally appear to be conforming to the instructions

R4R Performance

• Fidelity-oriented agents outperform goal-oriented agents

R4R Performance

- Ablation Studies
 - Fidelity-oriented agents attend more carefully to the instructions

Recent Work

- Effective and General Evaluation for Instruction Conditioned Navigation using Dynamic Time Warping - <u>https://arxiv.org/abs/1907.05446</u>
- Suite of DTW¹ based evaluation metrics for general instruction conditioned robotic tasks including VLN

[1] Berndt et al. Using Dynamic Time Warping to Find Patterns in Time Series AAAIWS'94.

Conclusion

Data 🗸 R4R

Google AI

✓ Agent training

Fidelity-oriented agents

 $r_T \sim 0$

Thank You!

Questions?

Google Al

Appendix

Vision-and-Language Navigation (VLN)

- Interpret natural **language** instruction
- Combine with **spatio-temporal** and visual scene understanding
- Taking **action** in environments with dynamically changing **visual** percepts
- Plan sequence of actions to reach a goal

Leave the bedroom, and enter the kitchen. Walk forward, and take a left at the couch. Stop in front of the window.

- Biases in R2R Dataset
 - direct-to-goal shortest paths
 - primary evaluation metrics are based on goal completion
- To better gauge an agent's ability to stick to the path
 - R4R general paths
 - CLS measure of path fidelity
- Navigation agents trained using CLS as reward are more path conformant

Room-to-Room (R2R) Dataset^[1]

- Data Collection
 - Sample start and goal nodes from the same house
 - Compute **shortest path** from start \rightarrow goal
 - reject if path length is <5m or number of edges ≠ [4, 6]

- Dataset Statistics
 - **21,567** total <path, instruction> pairs
 - Average instruction length: 29 words; Vocabulary size: ~3.1k
 - Average path length: 10m
 - Success Criteria: success if the navigation error is less than 3m

[1] Anderson et al. Vision-and-language Navigation: Interpreting visually grounded navigation instructions in real environments, CVPR, 2018. *Amazon Mechanical Turk

Room-for-Room (R4R) Dataset

- Shortcomings of R2R dataset
 - All paths are direct-to-goal shortest paths
 - Largest path has only 6 edges
 - Agents maximizing success rate may incidentally appear to be maximizing path conformity

Room-for-Room (R4R) Dataset

Make a left down at the narrow hall... Go out the door and wait. Turn around and enter the bedroom... Walk into the doorway and stop

- Path Length (PL)
- Navigation Error (NE)
- Oracle Navigation Error (OSR)
- Success Rate (SR)
- Oracle Success Rate (OSR)
- Success weighted by Path Length (SPL)¹
- Success weighted by Edit Distance (SED)²

[1] Anderson et al. On Evaluation of Embodied Navigation Agents arXiv, 2018.
[2] Chen et al. Touchdown: Natural language navigation and spatial reasoning in visual street environments CVPR, 2019

- Path Length (PL)
- Navigation Error
- Oracle Navigation Error
- Success Rate
- Oracle Success Rate
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)

- Path Length
- Navigation Error (NE)
- Oracle Navigation Error
- Success Rate
- Oracle Success Rate
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)

reference path

agent's predicted path

- Path Length
- Navigation Error
- Oracle Navigation Error (ONE)
- Success Rate
- Oracle Success Rate
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)

→ reference path

→ agent's predicted path

- Path Length
- Navigation Error
- Oracle Navigation Error
- Success Rate (SR)
- Oracle Success Rate
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)

 $success = d(p_5, r_5) < d_{th}$

→ agent's predicted path

- Path Length
- Navigation Error
- Oracle Navigation Error
- Success Rate
- Oracle Success Rate (OSR)
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)

 $\textit{oracle success} = d(p_{\textit{4}}, r_{\textit{5}}) < d_{\textit{th}}$

→ reference path

→ agent's predicted path

- Path Length
- Navigation Error
- Oracle Navigation Error
- Success Rate
- Oracle Success Rate
- Success weighted by Path Length (SPL)¹
- Success weighted by Edit Distance (SED)

$$\operatorname{SR}(P,R) \cdot \frac{d(p_1, r_{|R|})}{\max\{\operatorname{PL}(P), d(p_1, r_{|R|})\}}$$

spl = 4 / 8 = 0.5

----- reference path

agent's predicted path

- Path Length
- Navigation Error
- Oracle Navigation Error
- Success Rate
- Oracle Success Rate
- Success weighted by Path Length (SPL)
- Success weighted by Edit Distance (SED)²

$$\mathrm{SR}(P,R)\cdot\left(1-\frac{\mathrm{ED}(P,R)}{\max\left\{|P|,|R|\right\}-1}\right)$$

sed = 1 - (7 | 8) = 0.125

Desiderata

Path Similarity	Soft	Unique	Scale	Tractability
Measure	Penalties	Optimum	Invariance	
Penalize deviations from reference path even if they lead to the same goal	Soft notion of dissimilarity that depends on distances in the graph	Perfect score if and only if the reference and predicted paths are an exact match	Can consistently be used for multiple datasets	Fast, automated evaluation of performance

Desiderata Coverage of Existing Metrics

	Path Similarity Measure	Soft Penalties	Unique Optimum	Scale Invariance	Tractability
Path Length		1			1
Navigation Error		1			1
Oracle Navigation Error		1			1
Success Rate				1	1
Oracle Success Rate				1	1
SPL		1		1	1
SED	1		1	1	1

Conclusion

- Following instructions is important in VLN
 - going straight to the goal can often be deadly, e.g., games, search-and-rescue
- R4R has more general paths: better dataset for VLN
- CLS
 - metric for computing an agent's path fidelity to reference path
 - can also be used as reward function to incentivize the agent to better conform to the reference path
- Future Work: new benchmarks for R4R, more datasets using the toolkit provided in our work

R2R Performance

- Ablation Studies
 - Agent optimized to reach the goal may incidentally appear to be conforming to the instructions

